

Electrical safety costs little ...

... a human life is priceless

BENDER Group

Content

Electrical safety in hospitals is vital

	Safe and secure electrical power systems	3
	Bender: your partner in the application of the new	
	international Standard for electrical safety in hospitals	4
	Optimal electrical safety	4
A.	Which power supply system ensures maximum safety?	
	Safety standards in medical locations	6
•	The highest demands are made in Group 2 medical locations	6
	The IT system in medical locations	
	The IT system transformer	
	The insulation monitoring device	
B.	How do you avoid dangerous overloads?	
	Load and temperature monitoring	9
C.	How do you inform your staff ?	
	Remote alarm indicator and test combination MK series	10
D.	What else can you do for increased safety ?	
	Insulation fault location in IT systems with the EDS461	
	system, for intensive care units and operating theatres	11
	TN-S systems: advance information with RCM and RCMS $_$	12
E.	How do you avoid dangers in case of public electricity supply failure ?	
	Three supply options for IT systems 13 - 1	14
•	Three supply options for IT systems 13 – 7	14

Products & technical details

A-ISOMETER® 107TD47 -Insulation-, load- and temperature monitoring device Products & technical details _____ 16 – 17 MK2007 - Remote alarm indicator and test combination Products & technical details ______ 18 – 19 MK2430 -Remote alarm indicator and test combination Products & technical details _____ 20 - 21 TM – Alarm indicator and operator panel Products & technical details _____ 22 – 23 ES710– Single-phase isolating transformer Products & technical details _____ 24 DS0107 – Three-phase isolating transformer Products & technical details _____ 25 ESL0107 – Isolating transformer for operating theatre lamps Products & technical details _____ 26 A-ISOMETER IR426-D47 – Insulation monitoring device for operating theatre lamps Products & technical details _____ 27 EDS461 – Insulation fault location system Products & technical details 28 – 31 UMC107E – Switchover and monitoring module Products & technical details ______ 32 – 33 IPS – Isolated power system – The time and cost saving overall solution Products & technical details _____ 34 Bender communication solutions _____ 35 - 37

References	38 -	39

Electrical safety in hospitals is vital

The benefits offered by modern medical knowledge and technical equipment are overruled by unexpected loss of electrical power.

In intensive care units TIME is of the essence and the absolute reliability of electrical systems is of VITAL importance.

Safe and secure electrical power systems

Bender systems have provided the answer for reliable and cost effective electrical safety solutions for healthcare facilities for over 60 years. Hospitals around the world rely on Bender products and the technical support of Bender ENGINEERS, where the safety of patients and the critical performance of their medical electrical equipment is at stake.

Bender – Electrical safety for hospitals

Bender – Your partner in the application of the new international Standard for electrical safety in hospitals

Bender is acknowledged as the expert in the design and installation of power systems according to the international standard IEC 60364-7-710: 2002-11: Electrical installations of buildings – Requirements for special installations or locations – medical locations.

Bender systems are specially developed for electrical safety management in health care facilities, they provide early detection of critical errors or insulation deteriorations in the power supply of medical electrical equipment.

Principles for an electrical safety management in healthcare facilities

- Insulation faults must not lead to a power failure.
- Fault currents in an electrical system must be reduced to an uncritical level.
- Permanent monitoring of the power supply for medical locations must be guaranteed.
- Fault repairs must be able to be planned in advance to suit patient needs.
- The provision of clear unambiguous labelling of power outlets and distribution switchboards with readily available system documentation.

Optimal electrical safety

Whoever takes responsibility for the building or running of a hospital or any other healthcare facility has to ensure a maximum of electrical safety.

Bender is a reliable partner worldwide developing the appropriate system solution in accordance with the international Standard IEC 60364-7-710: 2002-11.

As there can be no compromise concerning the safety of patients and staff, we create flexible solutions for your needs. Let us be your partner and take advantage from our expert knowledge

... in the design stage

- Professional advice
- Design support
- Drafting of invitation to tender

...during the installation

- Installation of devices and systems
- Functional test and commissioning
- Fault location / fault clearance
- Adaptation / optimisation
- Operator training

... and later on

- Support
- Inspection / maintenance
- Repair / spares
- Retro-fitting, modifications, extensions

All around the world hospitals rely on Bender safety: St. Louis Hospital, Thailand

We want to inform you about the five most important topics concerning electrical safety in healthcare facilities as follows:

- A Which power supply system ensures maximum safety?
- B How do you avoid dangerous overloads?
- How do you inform your staff?
- What else can you do for increased safety?
- How do you avoid dangers in case of public electricity supply failure?

Which power supply system ensures maximum safety?

Safety standards in medical locations

According to IEC 60364-7-710: 2002-11 the medical procedures carried out in a room, define the rooms Group classifications.

710.3.5 Group 0

 Medical locations where no applied parts are intended to be used.

710.3.6 Group 1

Medical locations where applied parts are intended to be used as follows:

- externally
- invasively to any part of the body, but not to the heart, except where 710.3.7 applies.

710.3.7 Group 2

Medical locations where applied parts are intended to be used in applications such as intracardiac procedures, operating theatres and vital treatment where failure of the supply can cause danger to life.

The highest demands are made in Group 2 medical locations

A first fault must not result in power supply interruption and hence to failure of life-support equipment.

IEC 60364-7-710: 2002-11 requires the IT system (unearthed system) for all Group 2 medical locations

710.413.1.5

In Group 2 medical locations, the medical IT system shall be used for:

- Circuits supplying medical electrical equipment and systems intended for life-support or surgical applications
- Other technical equipment in the patient environment

The following rooms are of special concern:

- Anaesthetic rooms
- Operating theatres
- Operating preparation rooms
- Operating recovery rooms
- Heart catheterization rooms
- Intensive care rooms
- Angiographic examination rooms
- Premature baby rooms

Operating room Examples of Group 2 locations Picture: www.trilux.de

Intensive care unit Picture: www.trilux.de

Premature

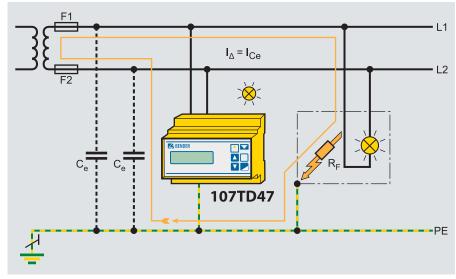
Picture: www.trilux.de

IT systems (unearthed systems)– for a reliable power supply

The IT system in medical locations

The use of an IT system is the backbone of a reliable power supply in medical locations. Contrary to an earthed system (TN system) there is no conductive connection between active conductors and the protective earthing conductor within the IT system.

Thus four essential demands are met:


- When a first insulation fault occurs the power supply is not interrupted by the tripping of a protective device.
- Medical electrical equipment continues to function.
- Fault currents are reduced to an uncritical level.
- No panic breaks out in the operating theatre because power failure is averted.
- Many national and international standards regard the use of the IT system as the backbone of a safe power supply in medical locations, for example:

Special brochure for: NEC / NFPA / UL / CSA / JES / AS

International:	IEC 60364-7-710	UK:	BS 7671 GN7/HTM2007
Germany:	DIN VDE 0100-710	Norway:	64/747/FDIS
Austria:	ÖVE / ÖNORM E 8007	Spain:	UNEE 2 0-615-80
France:	NFC 15-211	Belgium:	T 013
Italy:	CEI 64-4	Finland:	SFS 6000
Brazil:	NBR 13543	Hungary:	MSZ 2040

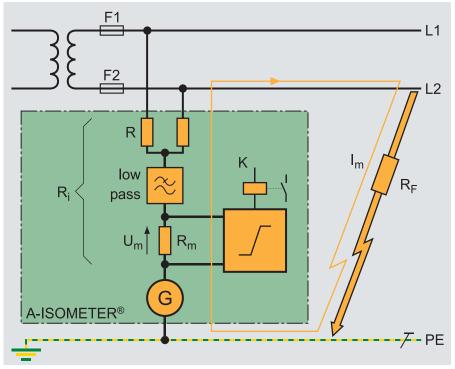
Ireland:	ETCI 10.1
Netherlands :	NEN 3134
Slovakia:	STN 33 2140
South-Africa:	SABS 051
Russia:	GOST P 50571
China:	GB16895/GB50333-2002

IT system with insulation monitoring by A-ISOMETER® 107TD47

A

Insulation monitoring – safety plus thanks to advance information

The medical IT system consists of an isolating transformer, a monitoring device to monitor insulation resistance, transformer load and temperature and an remote alarm indicator and test combination, installed in the operating theatre, or at a manned nurse station, nearby. Continuous insulation monitoring (IEC 60364-7-710: 2002-11, section 413.1.5) ensures that a deterioration in insulation resistance is immediately detected and signalled but (this is the decisive factor) there is no power supply interruption and continuity of operation is guaranteed.


The IT system transformer

In accordance with IEC 60364-7-710: 2002-11, section 512.1.6, the rated output of the transformer shall not be less than 0.5 kVA and shall not exceed 10 kVA. Single-phase transformers are recommended. The secondary voltage shall not exceed AC 250 V, even if three-phase systems are fitted.

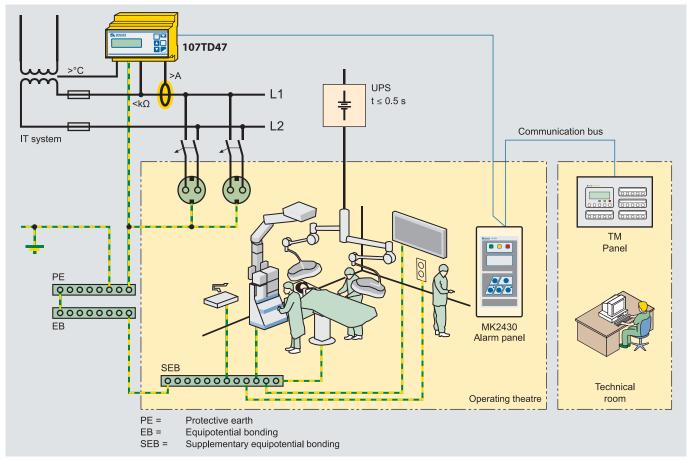
The insulation monitoring device

The insulation monitoring device 107TD47 is a vital unit to ensure the availability of the IT system. Connected between system and earth, it continuously monitors the insulation resistance. The integrated AMP measuring principle allows insulation faults with DC components to be precisely recorded and indicated.

Simultaneously, the A-ISOMETER® 107TD47 monitors the load current and the temperature of the transformer. Additionally it meets the requirements of IEC 60364-7-710: 2002-11, section 413.1.5 and IEC 61557-8: 2007-01.

Function principle of insulation monitoring

How do you avoid dangerous overloads?


Load and temperature monitoring

The load an IT system transformer can put at the user's disposal is not endless. Therefore monitoring of overload and transformer temperature according to IEC 60364-7-710 2002-11, section 413.1.5 is required.

- Measurement and indication of excessive heating of the transformer sensed by PTC resistors.
- Measuring and recording of the load current sensed via measuring current transformers.
- Thus, an overload of the system can effectively be signalled and the staff is informed by an optical and acoustical signal, so that the load can be reduced by switching off unnecessary equipment.

In the main feeder of the IT system transformer, overcurrent protective devices are only used for protection against short-circuits, so that an overload does not lead to a power failure.

Consequently the running of the medical technical equipment is not at risk.

IT system with load and temperature monitoring

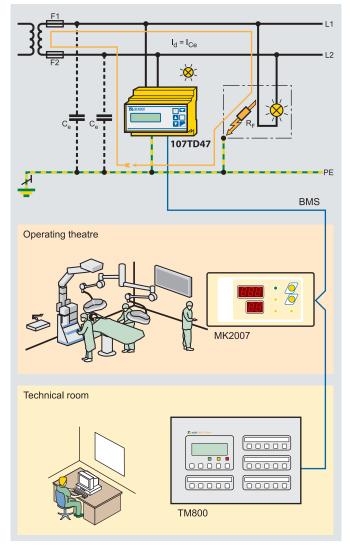
C How do you inform your staff?

Continuous information about the status of the electrical installation is vital where reliability of supply is of paramount importance.

Remote alarm indicator and test combination MK series

The remote alarm indicator and test combinations of the MK series meet the requirements of IEC 60364-7-710: 2002-11, section 413.1.5, for modern information and communication systems in hospitals in various ways.

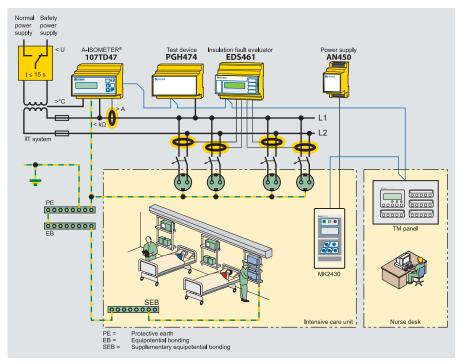
Installed in medical locations, the MK series provides audible and visual signals, to immediately inform the staff.


The MK2007 contains a seven-segment-display to indicate the insulation resistance and the load current as well as various alarm LEDs and buttons for "Isometer testing" and "buzzer off".

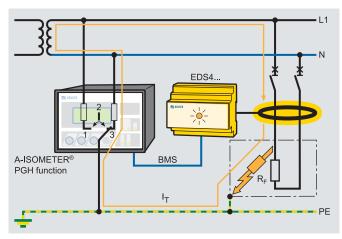
The LC text display of MK2430 only shows the important information required in a given situation, in this way confusion caused by a flood of information is prevented. As users have the choice of 16 national languages, the MK2430 is perfectly designed for international use.

The MK2430 version allows programming of individual alarm text messages, for eight additional digital inputs from other electrical equipment (e. g. monitoring of medical gases) via the bus.

Cost-saving installation


The exchange of information between the A-ISOMETER® 107TD47 and the MK series takes place via a time and cost-saving installation of a two-wire bus. This facilitates the installation of simple parallel indications and information networks.

Staff information with MK2007


What else can you do for increased safety? Insulation fault location for intensive care units

Insulation fault location in IT systems with the EDS461 system

In medical locations, IT systems with insulation monitoring are intended to supply medical electrical equipment. That ensures reliable power supply, even when a first fault occurs. But sometimes the insulation monitoring device is not sufficient for fast localisation and elimination of the insulation fault. Particularly in the view of the variety of electrical equipment (e.g. socket outlet circuits) used in intensive care units, insulation fault location is disruptive and costly in terms of time and money. The EDS461 insulation fault location system is the modular solution for this problem. It facilitates precise localisation of insulation faults without disruption to the operation of the power system.

EDS461 insulation fault location system applied in an intensive care unit

Function principle of the EDS461 system

Advantages:

- Insulation fault location during operation
- Fast localisation of faulty circuits
- Reduced maintenance costs
- Central indication via LC text display at remote alarm indicator and operator panel

System functions:

- Indication of faulty branch circuits
- Easily retrofitting with existing installations due to the modular design
- Measuring current transformers in different sizes and designs
- Up to 708 sub circuits can be monitored
- Communication via two-wire connection
- Universally applicable for all IT systems

Function principle:

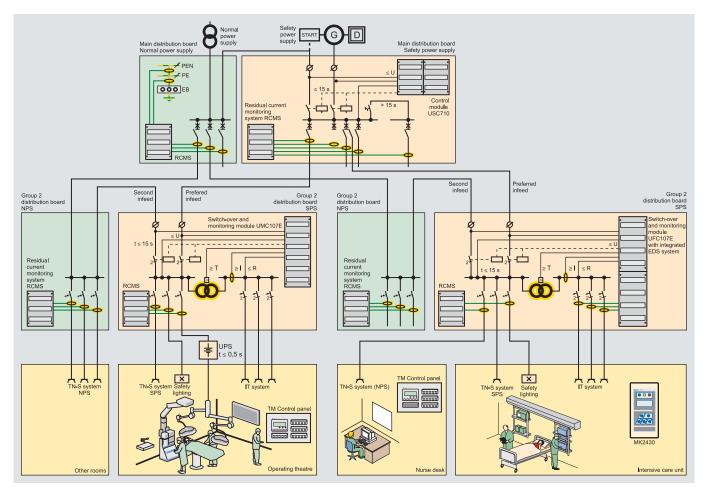
The EDS461 system works in combination with a central insulation monitoring device, e. g. an A-ISOMETER[®], 107TD47. After an alarm message the EDS461 system activates automatically the fault location. A test device generates a test signal for a defined period of time. Its amplitude and duration are limited. The signal flows via the location of the insulation fault and through all measuring current transformers within the insulation fault path. The EDS461 system scans all measuring current transformers.

The test signal is detected by the current transformers and evaluated by the electronics of the EDS461 system. The EDS461 with its LEDs or the central control and indicating device provides fault location information.

What else can you do for increased safety? Residual current monitoring for TN-S systems

TN-S systems: advance information with RCM and RCMS

In order to avoid leakage currents, the IEC 60364-7-710 recommends the installation of the TN-S system (five conductors) down-stream of the main distribution board of the building. This standard also recommends to monitor the system in order to ensure a high insulation level of all conductors.


For fulfilling the task of monitoring, the use of RCM (residual current monitors) respectively RCMS (residual current monitoring systems), which detect and indicate fault currents at an early stage instead of unintentional switching off, has proved to be successful.

According to IEC 60364-7-710: 2002-11, the use of the TN-S system (earthed system) in medical Group 2 locations is restricted to the supply of:

- Circuits for the supply of operating tables
- Circuits for X-ray units
- Circuits for large equipment with a rated power greater than 5 kVA
- Circuits for non-critical electrical equipment (non life support)

Advantages:

- Prewarning before unexpected interruptions occur, prevention of fire risks and damage to property
- Convenient monitoring of the electrical installation from a central control room
- Adjustment to the system ambient conditions by individual adjustable response values

RCMS system in a hospital NPS = Normal power supply - SPS = Safety power supply

How do you avoid dangers in case of public electricity supply failure?

Due to the vital importance of electrical safety in hospitals, healthcare facilities mostly have at least two independent sources of power supply at their disposal (e. g. public electricity supply, generators, UPS). In this way, power failures of the public electricity supply do not lead to a failure of medical electrical equipment that exposes patients to danger. According to IEC 60364-7-710: 2002-11, section 313, in medical locations, the distribution system should be designed and installed to facilitate the automatic changeover from the main distribution system to the electrical safety power source feeding essential loads.

IEC 60364-7-710, section 556.5.2.1.1: In medical locations, a power supply for safety services is required, which, in case of a failure

Electrical safety source 1/L1 Main distribution 000000 Щ 2/L1 network Equipotential bonding bar Automatic < U / L1 < U / L2 Cabinet temperature control transfer switch A4 < U / L3 IT system transformer IT system monitoring 2 pole Ju 2 Y Α5 W1 F5 F6 2pole 2pole 2pole 2pole 2pole 2pole Subcircuits A U2 V2 \bigcirc \bigcirc 60 60 \bigcirc \bigcirc (2) V2 V2 ⊲ m 27 60000 60000 60000 60000 60000 Technical Operating theatre

Power supply for Group 2 medical locations

of the normal power supply source, shall be energised to feed the equipment with electrical energy for a defined period of time and within a predetermined changeover period.

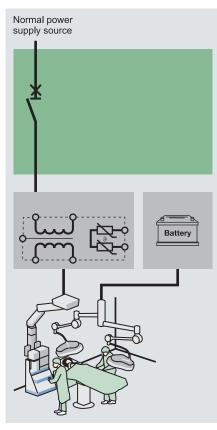
Depending on their medical tasks, Group 1 and Group 2 medical locations have different needs concerning the permitted changeover period and the tolerable duration of a power interruption.

Power supply sources with...

... a changeover period < 0.5 s

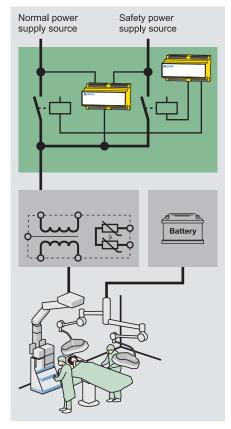
 Luminaires of operating theatre tables and other essential luminaires for a minimum period of 3 hours.

... a changeover period < 15 s


- Safety lighting
- Medical electrical equipment in Group 2 medical locations
- Equipment of medical gas supply
- Fire detection

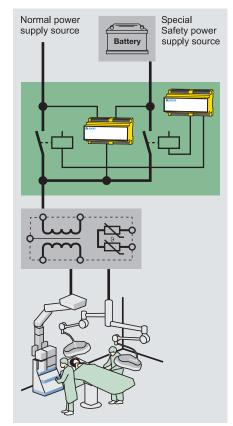
... a changeover period > 15 s

 Equipment essential for maintaining hospital services (e. g. cooling equipment, cooking equipment, sterilisation equipment)


Three supply options for IT systems:

IT system with one supply cable

1. One supply cable


The IT system is supplied by only one supply cable. If the supply cable is interrupted, a complete power failure is tolerated. (This system is not permitted in Germany and Austria).

IT system with two supply cables

2. Two supply cables

The IT system is supplied by two supply cables. In the event the first cable fails, automatic transfer to the second cable, takes place.

IT system with two supply cables and a special safety power supply source

3. Two supply cables but with a safety power source

The second cable derives the power from a special safety power supply source. That ensures the supply of life-support equipment, independently from the external and internal power supply.

In case, the UMC107E changeover and monitoring module is installed, the following tasks are carried out:

- Voltage monitoring of the preferred and second supply
- Transfer to the second supply if the voltage at one or several line conductors drops by more than 10 % of the nominal voltage
- Monitoring of the switching elements
- Automatic return to the preferred
- supply on recovery of its voltage
- Insulation, load and temperature monitoring of the IT system

Additionally, the technical staff has optical and acoustical status information of the medical IT system by MK... remote alarm indicators and test combinations.

Products & technical details

A-ISOMETER [®] , 107TD47 Insulation-, load- and temperature monitor	16
MK2007 Remote alarm indicator and test combination	18
MK2430 Remote alarm indicator and test combination	20
TM Alarm indicator and operator panel	22
ES710 Single-phase isolating transformer	24
DS0107 Three-phase isolating transformer	25
ESL0107 Isolating transformer for operating theatre lamps	26
A-ISOMETER [®] , IR426-D47 Insulation monitoring device for operating theatre lamps	27
EDS461 Insulation fault location system	28
UMC107E Changeover and monitoring module	32
IPS Isolated power system	34
Bender communication solutions	35

A-ISOMETER® 107TD47 – Insulation-, load- and temperature monitoring device

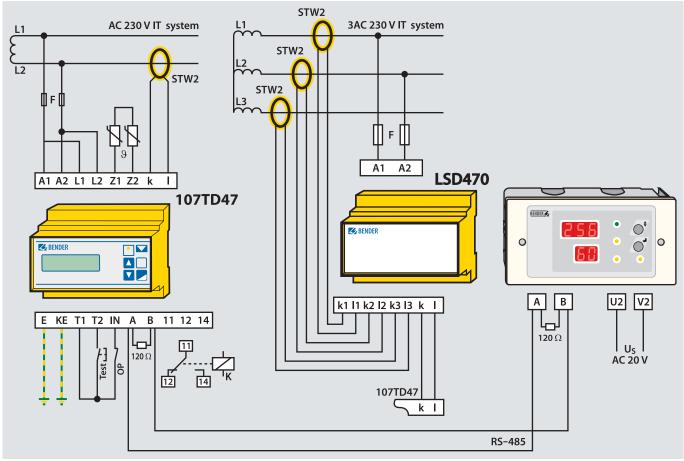
The A-ISOMETER® 107TD47 monitors the insulation resistance of unearthed power supply systems (IT systems) in medical locations in accordance with IEC 60364-7-710: 2002-11 and DIN VDE 0100-710 (VDE 0100-710): 2002-11.

In addition, the IT system transformer is monitored for overload and temperature.

A-ISOMETER® 107TD47

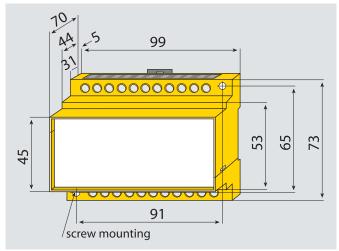
Features:

- Compact multifunction device for monitoring IT systems
- Insulation resistance alarm adjustable 50...500 k Ω
- Transformer load current adjustable 5...50 A
- Transformer temperature
- AMP measuring principle to ensure safe monitoring of the insulation resistance in accordance with IEC 61557-8 even in unearthed IT AC systems with galvanically connected DC circuits
- Increased safety due to continuous monitoring of the measuring connections such as:
 - system and PE connections
 - current transformer connection
 - temperature sensor connection
- Simple set-up and clear indications by LC text display and userfriendly menu control
- Two-wire interface for data exchange with MK2430 and MK2007 remote alarm indicators and test combinations


Standards:

The 107TD47 series complies with the requirements of the standards and regulations for electrical installations: DIN EN 61557-8 (VDE 0413-8): 2007-12, EN 61557-8: 2007, IEC 61557-8: 2007-01 + Corrigendum 2007-05, DIN VDE 0100-710 (VDE 0100-710): 2002-11 and IEC 60364-7- 710: 2002-11.

Technical data


Rated impulse withstand voltage	4 kV
Supply voltage Us	AC 5060 Hz / 230 V
Insulation monitoring	
System to be monitored	AC 50400 Hz / 0264 V
Response value, adjustable	50500 k Ω
Measuring time at 1 µF	≤ 3 s
Measuring voltage U _m	12 V
Measuring current I _m	max. 50 μA
Internal resistance R _i	\geq 240 k Ω
Impedance Z _i	\geq 200 k Ω
Load current monitoring	
Response value, adjustable	550 A
Temperature monitoring	
Response value	4 kΩ
PTC resistors acc. to DIN 44081	max. 6 in series
Interface	
Serial interface	RS-485 (BMS protocol)
Wire length	≤ 1200 m
Switching components	1 changeover contact
Test of the Electromagnetic Compatibility (EMC)	
Interference emission	acc. to EN 61000-6-2
Emissions acc. to EN 55011 / CISPR11	class B

	ucc. to EN 01000 0 2
Emissions acc. to EN 55011 / CISPR11	class B
Ambient temperature during operation	- 10 °C+ 55 °C

Wiring diagram 107TD47

Ordering details:			
Туре	Supply voltage Us	Art. No.	
107TD47	AC 230 V	B 9201 6003	
107TD47-133	AC 127 V	B 9201 6004	
Accessories:			
LSD470	3ph-adapter for load monitoring	B 9201 6001	
STW2	current transformer	B 942 709	
ES0107	temperature sensor	B 924 186	

Dimension diagram 107TD47

MK2007 – Remote alarm indicator and test combination

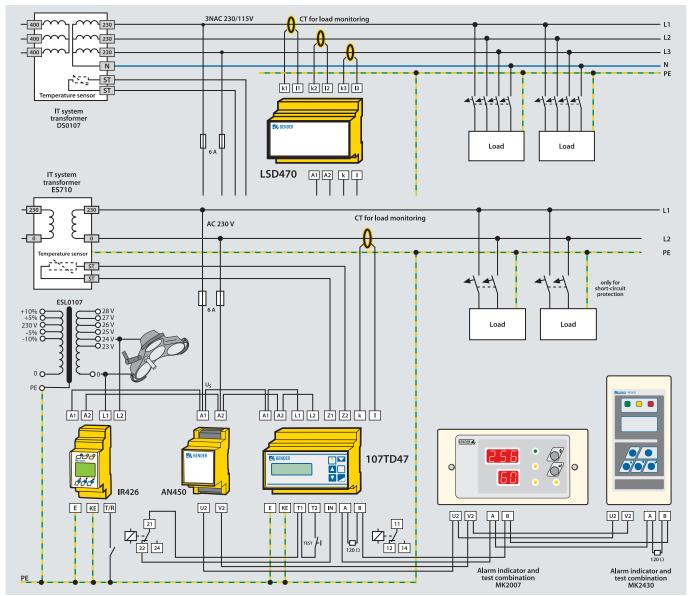
The MK2007 remote alarm indicator and test combination duplicates fault, alarm and operating messages of monitoring devices in accordance with IEC 60364- 7-710: 2002-11 and DIN VDE 0100-710 (VDE 0100-710): 2002-11. The insulation resistance in k Ω (3 digits) and the percentage value of the load current (2 digits) are clearly indicated by a seven-segment display. The MK2430 / MK2007 remote alarm indicators and test combinations, the A-ISOMETER® 107TD47 and the UMC107 changeover / monitoring module, are connected via a two-wire connection.

MK2007

Features:

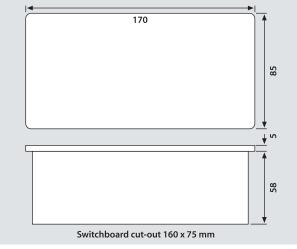
- Clear digital display for the indication of the insulation resistance and the load current values
- Time and cost-saving installation via a two-wire connection
- Easy-to-clean lexan front foil
- Simple parallel indication through two-wire interface

Technical data:


AC / DC 4060 Hz / 1228 V
12 mm high
3 digits
2 digits
one

Inputs / outputs:

Serial interface	RS-485 (BMS protocol)
Wire length	≤ 1200 m
Power On and alarm LEDs to signal	operation, overload,
	overtemperature, insulation fault
Buttons	test insulation monitor, mute


Test of the Electromagnetic Compatibility (EMC):

Interference emission acc.	to EN 61000-6-2
Emissions acc. to EN 55011 / CISPR11	Class B
Ambient temperature during operation	-5 °C+55 °C

IT system with insulation, load and temperature monitoring device 107TD47 as well as remote alarm indicator and test combination MK2007 / MK2430

Ordering details:			
Туре	Description	Art. No.	
MK2007CBMT	front plate English text	B 923 801	
MK2007CBM	front plate symbols	B 923 813	
AN450	power supply	B 924 201	

Dimension diagram MK

MK2430 – Remote alarm indicator and test combination

MK2430

Features:

- Comprehensive information: suitable for utilisation with MEDICS, several IT systems or EDS / RCMS systems
- Programmable display of customised alarms
- Signalling of medical gases messages in compliance with the relavant standards
- Display of test possibilities for several IT systems with evaluation and display of results
- Display of messages from UPS systems
- Individual texts for better information
- The complete list of languages for message texts supported: D, GB, F, I, E, P, BR, NL, N, S, FIN, DK, PL, H, CZ, SLO, CRO, SCG, TR, ID
- Display of messages from EDS / RCMS systems
- Standard configuration for systems like 4 IT systems with EDS
- Easy-to-clean lexan front foil
- Simple parallel indication by two-wire connection
- Available for flush-mounting, surface-mounting and cableduct mounting

The remote alarm indicator and test combination duplicates fault, alarm and operating messages of monitoring devices in accordance with IEC 60364-7-710: 2002-11 and DIN VDE 0100-710 (VDE 0100-710): 2002- 11. The LC text display provides medical staff with clear and concise information. Additional information for the technical staff can be retrieved by pressing a special button. A two-wire connection between the MK2430 / MK2007 remote alarm indicators and the changeover and monitoring modules allows a time and cost-saving installation.

Typical applications:

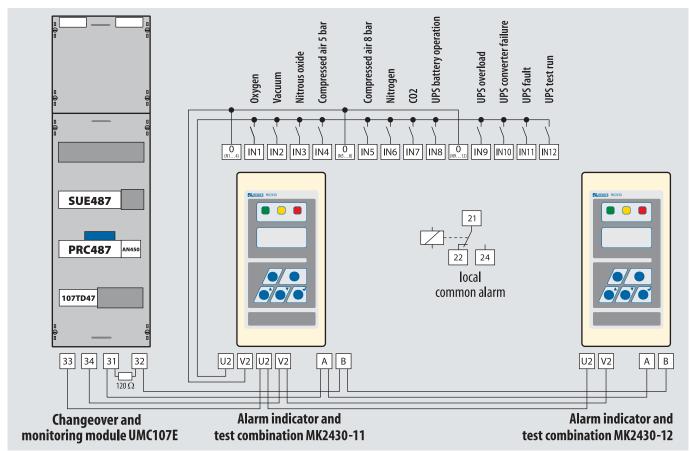
- Intensive care unit with several IT systems and EDS
- Operating theatres
- Industrial applications with EDS / RCMS

Technical data:

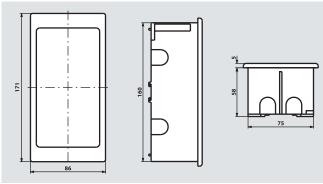
Supply voltage Us	AC 4060 Hz / 1828 V / DC 1930 V
LC display, illuminated	4 x 20 characters

Inputs (MK2430-11):	
Digital inputs	12
Voltage range (high)	15 V30 V AC / DC
Voltage range (low)	0 V 2 V AC / DC

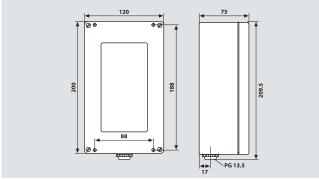
Interfaces:


Serial interface	RS-485 (BMS protocol)
Wire length	≤ 1200 m
USB	V 2.0 / V 1.1

Test of the Electromagnetic Compatibility (EMC):


EMC immunity	to EN 61000-6-2
EMC emission	to EN 61000-6-4
Ambient temperature during operation	-5°C+55℃

Relay (MK2430-11):


Switching elements	1 changeover contact
Operating principle, adjustable	N / C operation
Rated operational voltage	24 V AC / DC
Function	programmable (test, fault, device failure)
Programming software	TMK-Set V3.x optional

UMC107E change over and monitoring module, MK2430-12 and MK2430-11 remote alarm indicator and test combination with 12 digital inputs for the communication of additional data

Dimension diagram – Flush-mounting version

Ordering details:		
Туре	Description	ltem no.
MK2430-11	Remote alarm indicator and test combination, 12 digital inputs	B 9510 0001
MK2430-12	Remote alarm indicator and test combination	B 9510 0002
MK2430A-11	As MK2430-11 but with surface-mounting enclosure	B 9510 0005
MK2430A-12	As MK2430-12 but with surface-mounting enclosure	B 9510 0006
MK24 cavity mounting kit		B 923 711
MK24 panel mounting kit		B 923 780
MK2430 mounting bracket kit	for flush-mounting enclosure. For snap-on mounting only	B 9510 1000
Flush-mounting backbox	included in scope of supply	B 923 710
AN450	Power supply	B 924 201

Dimension diagram – Surface-mounting version

TM – Alarm indicator and operator panel

TM-series – Alarm and Control Panel

TM features:

- The large, backlit text display indicates user-programable alarm text messages and additional information
- Three LEDs provide normal (green), warning (yellow), and alarm (red) indication
- The internal Bus interface allows the connection of Bender BMS bus components
- Multiple TM control panels may be connected in parallel to the external BMS-Bus interface
- Relay outputs, digital inputs and output options provide ease of connection to other systems

- Alarm / warning messages are automatically stored with date and time stamp.
 1000 text messages may be stored in memory; they may be accessed via the function keys or PC software
- Five function illuminated key panel modules allow simple operation and set-up of the TM
- The alarm/warning/status text messages may be programmed via USB interface and PC software
- Illuminated key panel modules and special purpose modules can be combined individually to meet costumers' needs
- Flush and surface mounted enclosures are available.

Alarm indicator and operator panels Surgeon control panels

Variety of applications

- Healthcare facilities
- Industrial, residential and functional buildings

Alarm indicator and operator panels

- Text display
- Membrane surface, anti bacterial

Surgeon control panels

- Multifunctional
- Stainless steel frame and fascia

TM-series w / digital timer, analogue clock and medical gases alarm panel

FM-series w / digital timer and clock

Illuminated door signs

Touch Panel

SCP Surgeons control panel, stainless steel series

SCP-TM, Surgeons control panel, TM series w / additonal x-ray film viewer section

ES710 -Single-phase isolating transformer

Isolating transformers of the ES710 series for the power supply of single-phase IT systems in accordance with IEC 60364-7-710: 2002-11 and DIN VDE 0100-710 (VDE 0100-710): 2002-11. A static screen is installed between the primary and secondary windings, which is connected to an isolated terminal. The mounting angles are isolated from the transformer core.

Features:

The single-phase isolating transformers meet the requirements of the following standards: IEC 60364-7-710: 2002-11, DIN VDE 0100-710: 2002-11, IEC 61558-1: 1997, DIN EN 61558-1 (VDE 0570-1): 1998 IEC 61558-2-15: 1999, DIN EN 61558-2-15 (VDE 0570-2-15): 2001

Technical data:

Primary voltage Secondary voltage

Operating mode

Insulation class

Connections

PTC resistor

Protection class

Max. ambient temperature Protection class

Frequency

AC 230 V

AC 230 V

В

40 °C

IP 00

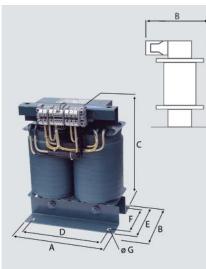
Class I

50...60 Hz

continuous operation

separate terminal block

1 resistor per transformer winding


- Rated power 3.15...10 kVA
- Built-in temperature sensors
- Low noise level < 35 dB (A)
- High overload capability
- VDE ENEC mark

ES710

Type series

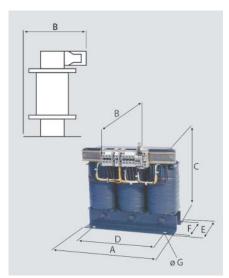
PA O 00 00 ST C O 115 V ST C 230 V O-O 230 V

Wiring diagram ES710

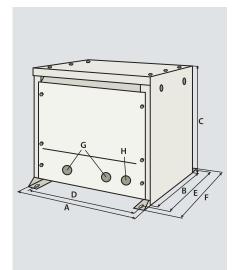
Dimensions, weight, ordering details									
Nominal			Mea	sures in	Total	Art. No.			
power kVA	Α	В	C	D	E	F	G	weight kg	
3.15	240	230	325	200	200	160	11	49	B 924 211
4	280	220	370	240	190	150	11	59	B 924 212
5	280	230	370	240	200	160	11	61	B 924 213
6.3	280	245	370	240	215	175	11	65	B 924 214
8	280	260	370	240	230	190	11	74	B 924 215
10	320	280	420	270	233	193	13	85	B 924 216

Dimension diagram

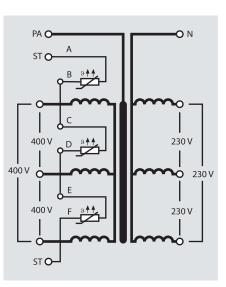
DS0107 – Three-phase isolating transformer



Isolating transformers of the DS0107 series for the power supply of three-phase IT systems in accordance with IEC 60364-7-710: 2002-11 and DIN VDE 0100-710 (VDE 0100 Teil 710): 2002-11. A static screen is installed between the primary and secondary windings, which is connected to an isolated terminal. The mounting angles are isolated from the transformer core.


Features:

- The three-phase isolating transformers meet the requirements of the following standards: IEC 60364-7-710: 2002-11, DIN VDE 0100-710: 2002-11, IEC 61558-1: 1997, DIN EN 61558-1 (VDE 0570-1): 1998 IEC 61558-2-15: 1999, DIN EN 61558-2-15 (VDE 0570-2-15): 2001
- Rated power 3.15...10 kVA
- Built-in temperature sensors


DS0107

Dimension diagram

Dimension diagram

Technical data:

Primary voltage	3AC 400 V
Secondary voltage	3NAC 230 / 127 V
Frequency	5060 Hz
Operating mode	continuous operation
Insulation class	В
Max. ambient temperatur	e 40 °C
Protection class	IP 00
Connections	separate terminal block
Protection class	Class I
PTC resistor	1 resistor per transformer winding

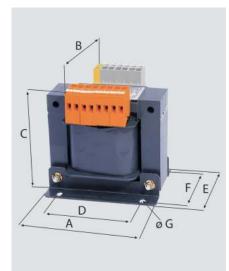
Wiring diagram DS0107

	<i>,</i>	,			<u> </u>				
Nominal			Mea	Total	ArtNo.				
power kVA	А	В	C	D	Ε	F	G	weight kg	
3.15	360	210	325	310	170	135	11	63	B 924 106
4	360	225	325	310	185	150	11	70	B 924 121
5	360	240	325	310	200	165	11	77	B 924 112
6.3	420	230	370	370	200	160	11	97	B 924 107
8	420	245	370	370	215	175	11	107	B 924 628
10	420	260	370	370	230	190	11	130	B 924 672

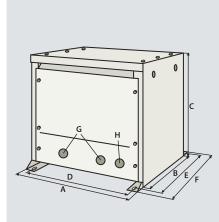
Enclosures for transformers										
Туре				Measure	es in mm				Total	ArtNo.
	Α	В	C	D	Ε	F	G	Н	weight kg	ArtNO.
ESDS0107-1	430	380	500	385	420	450	ø 37.5	ø 20.5	16	B 924 6731
ESDS0107-2	600	420	490	555	460	490	ø 50.5	ø 20.5	23	B 924 674 ²

 1 for ES710 / 3150 . . . ES710 / 10000 and DS0107 / 3150 . . . DS0107 / 5000 2 for DS0107 / 6300 . . . DS0107 / 10000

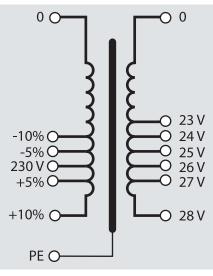
ESL0107 – Isolating transformer for operating theatre lamps



Isolating transformers of the ESL0107 series for the power supply of single-phase IT systems for operating theatre lamps in accordance with IEC 60364-7-710: 2002-11 and DIN VDE 0100-710: 2002-11. A static screen is installed between the primary and secondary windings, which is connected to an isolated terminal. The mounting angles are isolated from the transformer core.


Features:

The single-phase isolating transformers meet the requirements of the following standards: IEC 60364-7-710: 2002-11, DIN VDE 0100-710: 2002-11, IEC 61558-1: 1997, DIN EN 61558-1 (VDE 0570-1): 1998, DIN EN 61558-1: 1998-07 (IEC 61558-1: 1997), DIN EN 61558-2-6: 1998-07 (IEC 61558-2-6: 1997)


ESL0107

Dimension diagram ESL0107

Dimensions diagram enclosure

Wiring diagram ESL0107

Technical data:

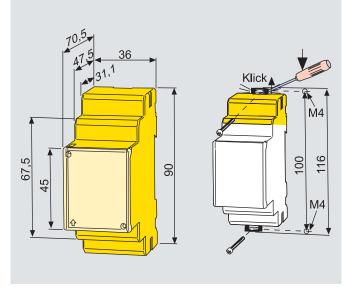
Primary voltage	230 V, - 5 %, - 10 %, + 5 %, + 10 %
Secondary voltage	AC 23, 24, 25, 26, 27, 28 V
Frequency	5060 Hz
Operating mode	continuous operation
Insulation class	В
Max. ambient tempe	erature 40 °C
Protection class	IP 00
Connections	separate terminal blocks
Protection class	Class

Dimensions, weight, ordering details									
Nominal			Mea	Total	Art. No.				
power kVA	Α	В	C	D	E	F	G	weight kg	
0.12	96	96	105	84	82	65	5,5	2,3	B 924 632
0.16	96	106	105	84	92	75	5,5	2,8	B 924 633
0.28	120	102	125	90	92	74	5,5	4	B 924 634
0.4	120	134	125	90	124	90	5,5	6,7	B 924 637
0.63	150	130	150	122	130	108	6,5	9,7	B 924 638
1	174	145	175	135	150	120	6,5	16,1	B 924 639

Enclosures for transformers:										
Туре				Measure	es in mm	I			Total	Art. No.
	Α	В	C	D	Ε	F	Н	Ι	weight kg	
ESL0107-0	240	280	220	220	300	320	ø 29	ø 20.5	3.5	B 924 204

26

A-ISOMETER[®] IR426-D47 – Insulation monitoring device for operating theatre lamps



A-ISOMETER® IR426-D47

Standards:

The A-ISOMETER® IR426-D47 complies with IEC 61557-8: 2001-01 + Corrigendum 2007-05, DIN EN 61557-8 (VDE 0413-8): 2001-12, ASTM F 1669M-96 (2002). When installing the device, the safety instructions supplied with the equipment must be observed!

Ordering detai	ls	
Туре	Supply voltage U _S	Art. No.
IR426-D47-2	DC / AC 70300 V	B 9101 6307
Mounting clip for screw	fixing (1 piece per device)	B 9806 0008

Dimension diagram XM420

The A-ISOMETER® IR426-D47 monitors the insulation resistance of IT systems (isolated power) for operating theatre lamps.

Features:

- For DC / AC IT systems 0...132 V
- Response value 10...200 kΩ
- Built-in test button
- Built-in POWER-ON and alarm LED
- Two alarm relays with changeover contacts

Technical data

Insulation coordination acc. to IEC 60664-1 / IEC 60664-3

Rated insulation voltage	AC 250 V
Rated impulse withstand voltage / contan	nination level 2.5 kV / III
Voltage range	
Operating range of U _n	DC 0132 V / AC 4262 Hz 0132 V
Supply voltage	
Supply voltage Us	DC 70300 V / AC 150460 Hz 70300 V
Power consumption	\leq 3 VA
Response value	
Response value R _{an}	10200 kΩ (50 kΩ)*
Response delay (R _F = 0,5 x R _{an} , C _e = 1 μ F)) ≤ 3 s
Measuring circuit	
Measuring voltage Um	± 12 V
Measuring current Im	≤ 100 µA
Internal DC resistance R _i	\geq 120 k Ω
Impedance Z _i at 50 Hz	\geq 117 k Ω
Admissible extraneous DC voltage	≤ DC 132 V
Admissible system leakage capacitance Ce	≤ 20 µF
Test of the Electromagnetic Compati	ibility (EMC)
IEC 61326	
General Data	
Ambient temperature, during operation	- 25 ℃+ 55 ℃

* factory setting

EDS461 – Insulation fault location system

Basically, every EDS461 system consists of the following components: the PGH474 test device, the MK2430 control and indicating device, and one or several EDS461-L-2 evaluators with the accompanying measuring current transformers. Information exchange between the EDS461-L-2 evaluators and the remote alarm indicator and test combination MK2430 takes place via a two wire connection.

EDS461-L-2:

Together with the measuring current transformer the EDS461-L-2 is used to evaluate test current signals generated by the PGH474.

The device subsequently evaluates the signals from all connected measuring current transformers. If the fault current detected by a measuring current transformer exceeds the response value, the respective alarm LED of the LED line and the alarm LED on the EDS461-L-2 light up and the alarm relay switches.

Up to 12 measuring current transformer can be connected to each EDS461-L-2.

All settings within the EDS system are carried out via bus at the remote alarm indicator and test combination MK2430, TM control panel or FTC470XET (see page 35, Communication).

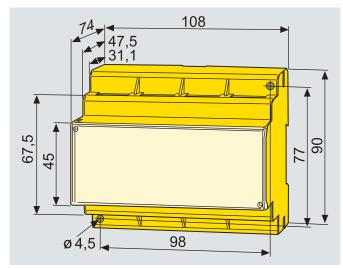
EDS461-L-2

PGH474:

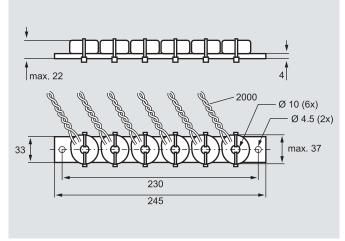
After detecting the insulation fault through the insulation monitoring device, insulation fault location can be started automatically or manually. Once the insulation fault test device is started, it produces a defined test current signal limited to approx. 1 mA.

PGH474

W10/8000:

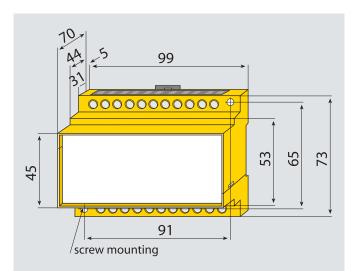

The measuring current transformer W10/8000 (internal diameter 10 mm) is a highly sensitive current sensor and converts even very small test currents into evaluable signals. Connection to the EDS461 is carried out via two connecting leads.

W10/8000-6:

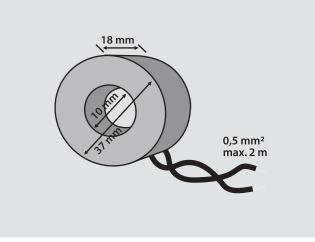

W10/8000-6 contains 6 W10/8000 on a plastic strip for monitoring closely to clipped-on DIN rail circuit breakers.

Standards:

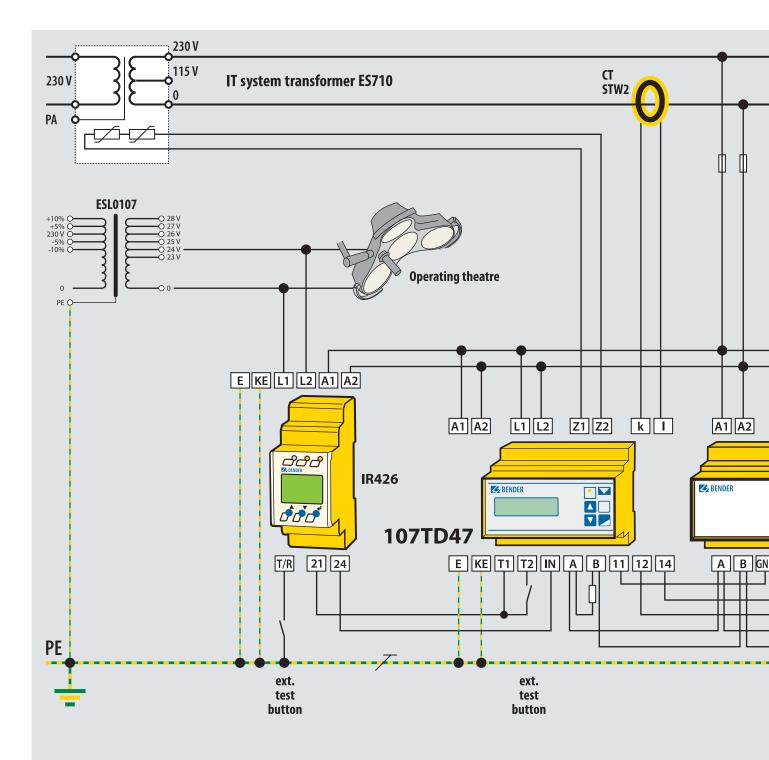
The EDS461 system fulfills the requirements of IEC 61557-9: 1999-09: Electrical safety in low voltage distribution systems up to AC 1000 V and DC 1500 V – Equipment for testing, measuring or monitoring of protective measures – Part 9: Equipment for insulation fault location in IT systems.

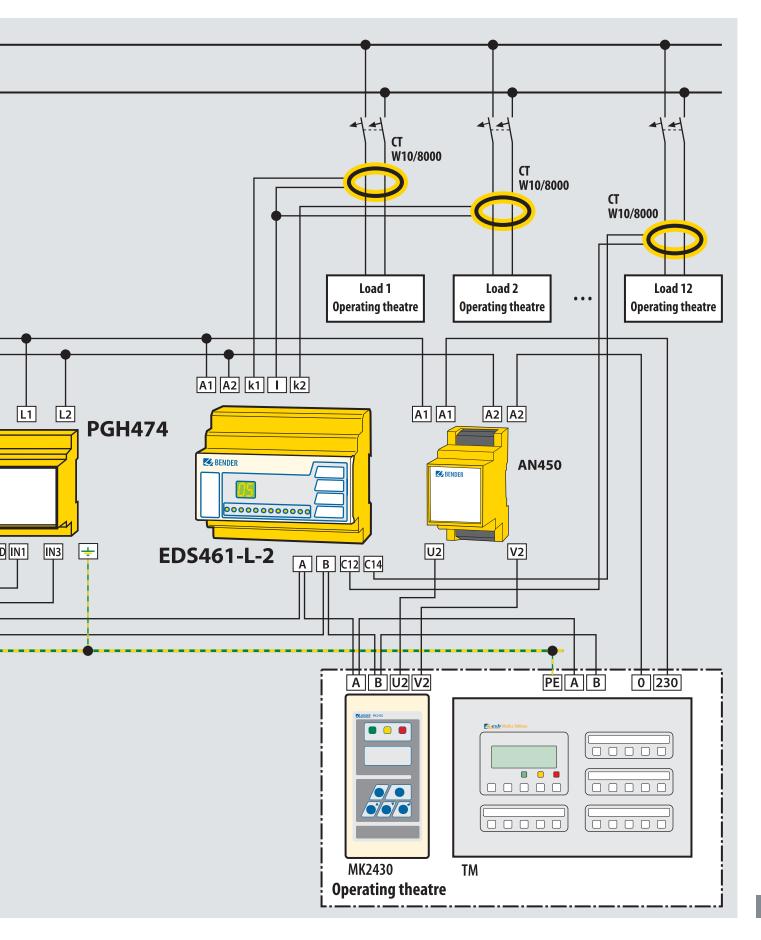


Dimension diagram EDS461-L-2



Dimension diagram W10/8000-6


Ordering details:						
Туре	Supply voltage U _S / Description	Art. No.				
EDS461-L-2	AC 230 V	B 9108 0008				
PGH474	AC 230 V	B 9501 8012				
W10/8000	CT for EDS461, internal diameter 10 mm	B 911 759				
W10/8000-6	CTs for EDS461, 6 fold, internal diameter 10 mm	B 911 900				



Dimension diagram PGH474

Dimension diagram W10/8000

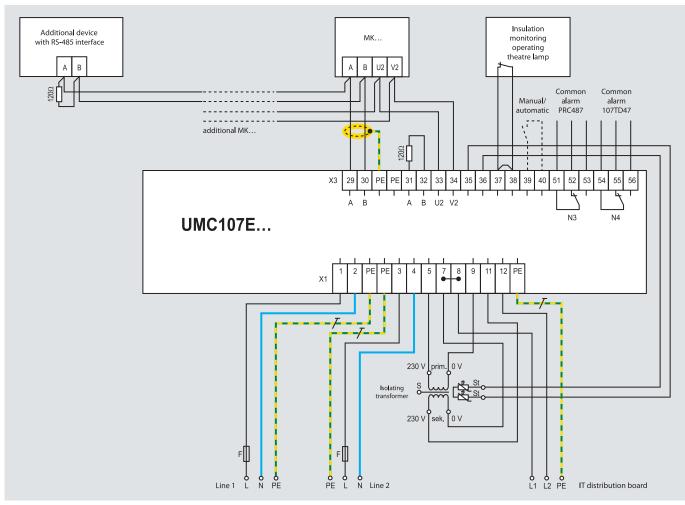
UMC107E – Changeover and monitoring module

UMC107E

Features

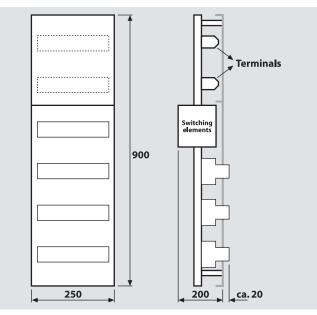
The modules contain all the monitoring devices required by the standard IEC 60364-7-710: 2002-11, such as:

- Voltage monitoring and changeover
- Insulation monitoring
- Transformer load and temperature monitoring


Standards and tests

The UMC107... series complies with the requirements of the standards and regulations for electrical installations: DIN EN 61557-8 (VDE 0413-8): 2007-12, EN 61557-8: 2007, IEC 61557-8: 2007-01 + Corrigendum 2007-05, DIN EN 60439-1 (VDE 0660-500): 2000-08, DIN VDE 0200-557 (VDE 0100-557): 2007-06, DIN VDE 0100-520 (VDE 0100-520): 2003-06, DIN VDE 0100-710 (VDE 0100-710): 2002-11, DIN VDE 0100-718 (VDE0100-718): 2005-10 and IEC60364-7-710: 2002-11.

An optional test has been carried out on the UMC107E series by TÜV Süddeutschland. The test report confirms the fulfilment of all requirements of the above-mentioned standards and regulations. The factory-prefabricated UMC107E changeover and monitoring modules are used for the power supply in Group 2 medical locations. Due to the short changeover time of < 0.5 s they are universally applicable. The fault, alarm and operating messages are indicated on the LC text display. The alarm text messages are transmitted to the remote alarm indicators and test combinations MK2430 or TM alarm indicator and operator panel via a two-wire connection. For common alarm, two voltage-free contacts can be used. All power conductors connection are wired short circuit and earth fault prove in accordance to DIN VDE 0100-520. The modules can be installed onto customary rack systems (1 field 6 rows).


Technical data

Rated voltage	AC 5060 Hz 230 V
Rated current	
UMC107E-65	65 A
UMC107E-80	80 A
Changeover time	≤ 0.5 s
Switching components	contactors
Insulation monitoring	
Response value, adjustable	50500 k Ω
Transformer monitoring	
Load current, response value, adjustable	550 A
Load current, indication	099 %
Voltage monitoring	
Response value, adjustable	0.70.85 x U _n
Overvoltage	1.15 x U _n
Response delay, adjustable	010 s
Return transfer time, adjustable	010 s
Outputs	
Galvanically separated interface	RS-485 (BMS protocol)
Power supply for MK	AC 20 V / 500 mA
Ambient temperature, during operation	- 5 °C+ 55 °C

Wiring diagram UMC107E

Ordering details:		
Туре	Rated current	ArtNo.
UMC107E-65	65 A	B 9205 6002
UMC107E-80	80 A	B 9205 6003

Dimension diagram UMC107E

IPS – Isolated power system the time and cost saving overall solution

S-IPS-F (floor-standing cabinet, with EDS option)

S-IPS-W (wall-mounted enclosure, with EDS option)

IPS (Isolated Power System) presents a ready-to-connect solution for the power supply in medical locations. All IPS are pre-wired to a terminal strip ready for field connection and are optionally available as distribution panels in floor-standing cabinets or wall mounted enclosures. Individual demands can be flexibly answered. Please contact your local Bender technical support.

Floor-standing cabinets and wall-mounted enclosures

The isolated power systems are incorporated in a floor-mounted sheet-steel enclosure with backed enamel finish. The enclosures comply at least with protection class IP 21. With closed doors the panel complies with protection class IP 54. The enclosure shall be lockable and front accessible.

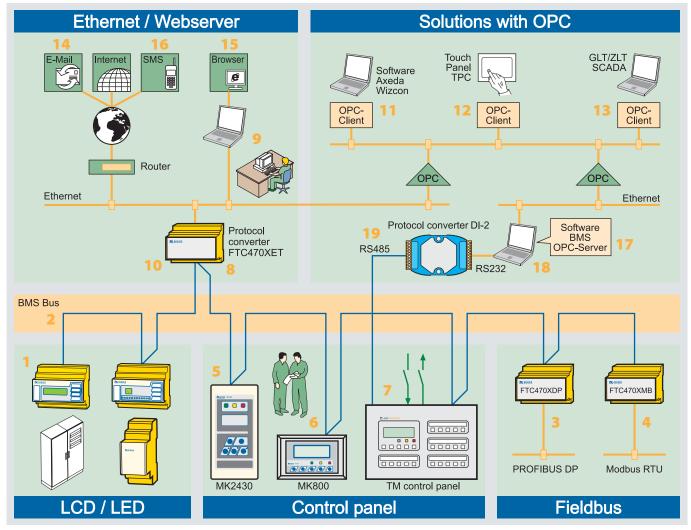
Isolated power systems comply with

- IEC 60364-7-710: 2002-11 "Electrical installations of buildings Part 7-710: requirements for special installations or locations – medical locations"
- DIN VDE 0100-710 (VDE 0100- 710): 2002-11: Electrical installations of buildings Requirements for special installations or locations Part 710: Medical locations
- BS 7671: "Special locations guidance note 7, chapter 10, HTM-20011 and HTM2007 Electrical services supply and distribution."
- IEC 60439-1: 2005-01 + EN 60439- 1: 2005-01 DIN VDE 0660 Part 500: "Low voltage switchgear and control gear assemblies."

Typical isolated power systems consists of:

- An isolating transformer complying with IEC 60364-7-710: 2002-11, DIN VDE 0100-710 (VDE 0100-710: 2002-11, IEC 61558-1: 2005-09, IEC 61558-2-15: 1999-02, Nominal power range: 3.15...10 kVA (S-IPS-F only)
- An A-ISOMETER® 107TD47 for monitoring the IT system: insulation resistance, load current, transformer temperature, system, earth and CT connection.
- Power supply for up to 3 remote alarm indicator and test combinations MK...
- An isolator switch
- Six two-pole circuit-breakers
- Equipotential bonding terminal
- EDS insulation fault location system (optional)

Common dimensions of the enclosure:								
	measures in mm							
	(W)	(D)	(H)					
S-IPS-F	374	425*	1913					
D-IPS-F	624	425*	1913					
T-IPS-F	874	425*	1913					
S-IPS-W	324	140	974					
D-IPS-W	574	140	974					
T-IPS-W	824	140	974					


*10 kVA: D: 625

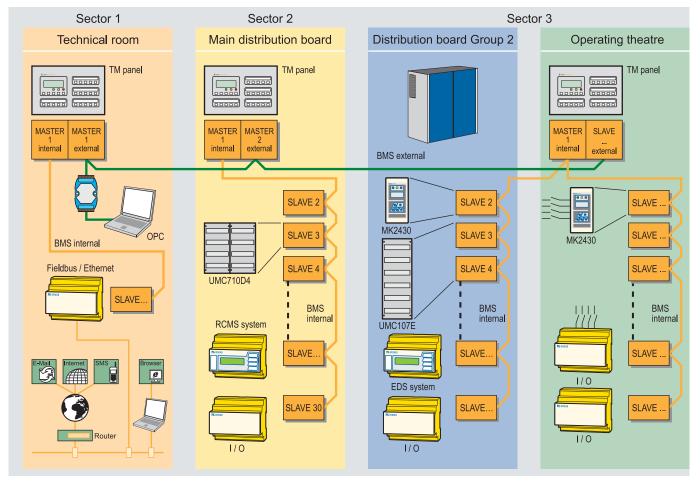
F =floor-standing, W =wall-mounted

Bender communication solutions

Device communication

Due to the fact that increasing demands are placed on communication capability, data transparency and flexibility, the use of modern fieldbus technologies and network technologies has become a must. However continuous communication and data visualisation can only be achieved with components that can easily be integrated into Bender communication solutions. Hence, operating, warning and fault messages via the Web or network, for example, substantially contribute to increasing the transparency of power supply systems, also allow a fast reaction to critical operating states. In addition, essential messages can be transferred via short text messages or e-mail to mobile phones or laptops of the service personnel. Early information about location and the cause of fault allow time and costefficient deployment of service personnel and can avoid equipment failure or the damage of expensive devices.

Communication possibilities with Bender systems and devices


- Bender systems or devices with BMS bus, such as RCMS, EDS, MEDICS[®] systems, A-ISOMETER[®] IRDH275, 375, 575
- 2 Bender BMS bus (internal)
- 3 Protocol converter FTC470XDP, BMS bus / PROFIBUS DP
- 4 Protocol converter FTC470XMB, BMS bus / Modbus RTU
- 5 Remote alarm indicator and test combination MK2430
- 6 TM alarm indicator and operator panel
- 7 Bender BMS bus (external)
- Protocol converter FTC470XET, BMS bus / Ethernet (TCP / IP), Web server, OPC interface
- 9 PC with standard-browser (Internet-Explorer, Firefox, Opera etc.)
- 10 OPC server in FTC470XET

- 11 OPC client: Axeda Wizcon visualization software
- 12 OPC client: Touch Panel TPC
- 13 OPC client: Scada software
- 14 FTC470XET functionality: E-mail notification via Internet
- 15 FTC470XET functionality:

18 - PC with software BMS OPC server

- Operation of Bender systems via Web browser
- 16 FTC470XET functionality: text messaging to mobile phones
- 17 BMS OPC server
- 19 Protocol converter DI-2 BMS bus (RS-485) / RS-232

External and internal BMS bus structure

FTC470XET

Fieldbus

- Ethernet (TCP/IP)
- Web browser
- History memory
- E-mail notification

FTC470XDP for PROFIBUS DP

Connection to PROFIBUS DP

Control via PROFIBUS Master

Query of alarms, measured values and

8-byte output and input data

5.7 / 12 / 15" Touch Panel

OPC and Modbus driver

Customised visualisation

Visualisation software Advantech Studio

parameters

Touch Panel

- System parameter setting
- OPC server
- Data logging
- Interface to visualisation systems

FTC470XET

FTC470XDP, FTC470XMB

Touch Panel

BMS OPC server

- Connection to BCS (Building System Control) / CPCS (Central Process Control) via TM alarm indicator and operator panels
- Query of alarm information
- Configurable via text file
- Interface for visualisation
- Configuration and customised visualisation

FTC470XMB for Modbus RTU

- Connection to Modbus RTU
- Control via Modbus Master
- Illustration of 10 Bender devices with bus capability
- Query of alarms, measured values and parameters

References hospital equipment

Omni International Hospital

Hospital Sao Luiz, Sao Paulo, Brazil

St. Louis Hospital, Bangkok, Thailand

Country Argentina	City Buenos Aires City	Clínica de la Ciudad
Argentina	Buenos Aires City	Clínica Obra Social Ministerio de Economía
		Hospital Britanico de Buenos Aires Sanatorio Mitre
	Gonzalez Catán. Buenos Aires	
	,	Hospital Municipal Gonzalez Catán
	Junín, Buenos Aires	Hospital de Junín
	Mar del Plata, Buenos Aires	Hospital de Mar del Plata
	Neuquen	Hospital Castro Rendón
	San Martin	Buenos Aires Hospital de San Martin
Austria	Bregenz	Landeskrankenhaus Bregenz
	Graz	Landeskrankenhaus Graz
	Innsbruck	Landeskrankenanstalten Innsbruck
	Klagenfurt	Unfallkrankenhaus Klagenfurt
	Linz	Krankenhaus der Elisabethinen Linz
		Landes-, Frauen- u. Kinderklinik
		Unfallkrankenhaus Linz
	Salzburg	County Hospital Salzburg
	2	Landeskliniken Salzburg
	Villach	Landeskrankenhaus Villach
	Wien	Allgemeines Krankenhaus-Unikliniken Wi
		Landeskrankenhaus Mödling
		SMZ OST-Donauspital
	Wiener Neustadt	Allg. Öff. Krankenhaus
	St. Pölten	Zentralklinikum St. Pölten
	7ell am See	Krankenhaus Zell am See
Delations	A	Heterovite in 75 december 1
Belgium	Antwerp	Universitair Ziekenhuis
	Bruges	St. Lucas Hospital
	Bruxelles	University Hospital V.U.BJette
		Centre Hospitalier Universitaire Saint-Luc
	Genk	St. Jan Hospital Oost-Jette
		Ziekenhuis Oost Limburg
	Gent	A.Z. Sint Lucas
	Liège	C.H.R. de la Citadelle
	Overpelt	Maria Ziekenhuis
Brazil	Brasilia	Hospital das Forças Armadas - INCOR
		Hospital Santa Luzia
	Caxias	Hospital UNIMED
	Curitiba	Hospital Evangélico
	Manaus	Hospital Adriano Jorge
	Porto Alegre	Hospital Mãe de Deus
	Rio de Janeiro	Hospital Barra Dór
		Hospital Naval Marcilio Dias
	São Paulo	Hospital AACD
		Hospital Albert Einstein
		Hospital Alemao Oswaldo Cruz
		Hospital Avorada
		Hospital Maternidade Sao Luiz
		Hospital Santa Catarina
	Vitória	Hospital Da Polícia Militar
Czech Republic	Brno	The Faculty Hospital of Brno
	Havirov	Hospital of Havirov
	Olomouc	Military Hospital
	Prague	The Faculty Thomayer's Hospital of Prague
	5	, , , , , , , , , , , , , , , , , , , ,
	Prostejov	Hospital of Prostejov
	Zlin	Country Bata's Hospital of Zlin
Chile	Santiago de Chile	Asociación Chilena de Seguridad
		Clínica Alemana
		Clínica Las Condes
		Hospital Clinico UC

Country	City	Name
China	Beijing	Children Hostial Tiantan Hospital University Hospital
	🕨 Changsha Xiangya	No. 2 Hospital
	Chongqing	No. 2 People's Hospital
	Chongqing	No. 3 People's Hospital
	Guangdong	Provincial People's Hospital
	Guangzhou	No. 1 People's Hospital
	Kunming	Red Cross Hospital (picture attached)
	Nanjing	No. 1 Hospital
	Shanghai	Changhai Hospital
	Shunghui	Renji Hospital
	Wuhan	Tongji Hospital
		Wugang Hospital
	Xi'an	Xijing Hospital
Denmark	Faroe Islands, Torshavn	Frederikssund Sygehus
		Hillerod Sygehus
		Landssygehuset
Germany	Berlin	Charite – Virchow Klinikum Berlin
,	Dresden	Universitätsklinikum Dresden
	Hamburg	Unfallkrankenhaus Eppendorf-Hamburg
	Hannover	Medizinische Hochschule Hannover
	Magdeburg	Uniklinikum Magdeburg
	München	Uniklinikum München-Großhadern
	Würzburg	Klinikum Würzburg
Great Britain	-	
Great Dillain	Coventry& Walsgrave	Coventry& Walsgrave Hospital
		Dartford & Gravesham, New Acute General Hosp. Russells Hall
	Dudley	
	Edinburgh	New Royal Infirmary
	London	Kings College University Hospital Lewisham Hospital
	Norfolk	Norfolk & Norwich, New General Hosp.
	Plymouth	Derriford Hospital
	Sussex	Royal Sussex County Hospital
Indonesia	Jakarta Jakarta	Dr. Cipto Mangunkusumo Hospital Puri Indah Hospital
	Klimanta	
		Wahab Syahrani Hospital Dr. Mohammad Hoesin Hospital
	Palembang	Eka Hospital
	Serpong	Eka Hospital
	Scipolig	Omni International Hospital
Jordan		Arab Heart & Special Surgery Centre
Korea		Sang Pyeong Mediplan
NUICa		Korea Veterans Welfare Corp.
l ebanon	Beirut	Governmental University Hosp.
		Hasbaya Hospital
Luxembourg	Ettelbruck	Clinique Saint-Louis Ettelbrück
	Kirchberg	Hôpital du Kirchberg
	Luxembourg	Centre Hospitalier Universitaire du Luxembourg
	Luxembourg	Hospital Princesse Marie-Astrid
	Wilz sur Alzette	Clinique de la Ville de Eich
		Clinique sacre Coeur
Malta	Taxien	General Hospital
Northern Ireland	Belfast	Lagan Valley Hospital
		Royal Victoria Hospital
		Royal Victoria Infirmary

Nigeria		City Abuja	National Women and Childrens Hospital
Norway		Drammen	Buskerud Sentralsykehus
INUIWay		Didititien	Sykehuset Buskerud HF
		Hamar	Sykehuset Innlandet
		Kristiansand	Sørlandets Sykehus
		Lillehammer	Lillehammer Fylkessykehus
		Oslo	Aker Sykehus
		0510	Rikshospitalet
			Sykehuset Asket & Bærum
			Ullevål Universitetssykehus
		Skien	Telemark Sentralsykehus
		Stavanger	Rogaland Sentralsykehus
		Tønsberg	Vestfold Sentralsykehus
		Trondheim	St. Olavs Hospital
Poland	Ь	Grodzisk	Mazowiecki Szpital Zachodni City
Tolanu	Ń	Katowice	Akademii Medycznej
		Ratowice	Centralny Szpital Kliniczny Slaskiej
		Warszawa	Centralny Szpital Kliniczny MSWiA City
		Tanscarra	Centrum Zdrowia Dziecka
			Instytut Hematologii Tranfuzjologii City
		Warszawa-Anin	Instytut Kardiologii City
Portugal		Lisboa	Hospital de Santa Maria
Portugal		LISUUd	Hospital de Sao José
		Porto	Hospital de S. António
		TOILO	Hospital de S. Joao
		Setúbal	Hospital Distrital de Setúbal
Danald's affinianal			·
Republic of Ireland		Cork	 University Hospital
		Dublin	St.Vincents Hospital
		Galway	University College Hospital
		Limerick	Regional Hospital
Russia		Kogalym	Kogalym Hospital
		Lipetsk	Lipetsk Hospital
		Moscow	Institute Bakulev
			62nd and 31st Hospital
Saudi Arabia		Riyadh	Dr. Mishari private hospital
			King Abdul Aziz Hospital
			King Fahd Medical City
			Security Forces Hospital
Singapore			Ang Mo Kio Community Hospital
			National University Hospital
			Changi General Hospital
			Singapore General Hospital
Slovenia		Ljubljana	University Clinic Ljubljana
Sri Lanka		Colombo	National Hospital
Sweden		Göteborg	Hospital Götebourg
		5	
Switzerland		Basel	Kantonsspital Basel
		Bern	Universitäts – Inselspital Bern
		Genève	Hopital Cantonal Genève
		Lugano	Ospedale Viganello
		Zurich	Universitätsspital Zürich
Taiwan			Ramkamheang Hospital
			Thai Nakarin Hospital
		Bangkok	St. Louis Hospital
Thailand			
Thailand Venezuela		Cagua, Edo. Aragua	Centro Clinico Cagua

The individual programme that meets your expectations: Designed for electrical safety – to meet every requirement – for every application

For more than 60 years Bender innovative measuring and monitoring systems are monitoring power supplies and provide early warning of critical operating conditions in many sectors

- Power supply in industrial, residential and functional buildings
- Machines and systems in production processes
- Power generation and distribution systems
- Information and communication technology systems

Electrical safety for unearthed power supplies

- Insulation monitoring devices A-ISOMETER®
- Insulation fault location systems EDS
- Earth fault relays

Electrical safety for earthed power supplies

- Residual current monitors RCM, RCMA
- Residual current monitoring systems RCMS
- For AC, pulsed DC and smooth DC currents (AC / DC sensitive)

Power supply for medically used rooms

- MEDICS®-Changeover and monitoring modules for medical locations in accordance with DIN VDE 0100-710: 2002-11 and IEC 60364-7-710: 2002-11
- Remote alarm indicator and operator panels
- Complete distribution systems
- IT system transformers

Measuring and monitoring relays

- For electrical quantities: current, voltage, phase sequence, frequency, etc.
- For special applications such as mining, mobile generators, welding robots, solar photovoltaic systems and many more

Communication solutions

- Protocol converter for standard bus systems (PROFIBUS, Modbus), Protocol converter for Ethernet /TCP / IP
- Visualisation of data via Axeda Wizcon and Active X
- Communication via OPC

Testing systems

- For electrical safety of medical electrical equipment and general electrical equipment
- Function testers for medical electrical equipment
- Equipment management software

Service

- Function check, EMC check, system quality check
- Electro thermography, commissioning, periodic testing
- Technical approvals of electrical installations by recognised experts, inventory taking / maintenance of installations
- Modernisation, central building control systems / visualisation, on-site training courses
- Fault elimination, insulation fault location

Dipl.-Ing. W. Bender GmbH & Co. KG

P.O. Box 1161 • 35301 Grünberg • Germany Londorfer Straße 65 • 35305 Grünberg • Germany Tel.: +49 6401 807-0 • Fax: +49 6401 807-259 E-Mail: info@bender-de.com • www.bender-de.com