

Gebäudeautomation mit WAGO I/O PRO und TOPLON PRIO

Anwendungshinweise

Letzte Änderung: 01.08.05

Copyright © 2005 by WAGO Kontakttechnik GmbH & Co. KG Alle Rechte vorbehalten.

WAGO Kontakttechnik GmbH & Co. KG

Hansastraße 27 D-32423 Minden

Tel.: +49 (0) 571/8 87 - 0 Fax: +49 (0) 571/8 87 - 1 69

E-Mail: info@wago.com

Web: http://www.wago.com

Technischer Support

Tel.: +49 (0) 571/8 87 – 777 Fax: +49 (0) 571/8 87 – 8777

E-Mail: tcba@wago.com

Es wurden alle erdenklichen Maßnahmen getroffen, um die Richtigkeit und Vollständigkeit der vorliegenden Dokumentation zu gewährleisten. Da sich Fehler, trotz aller Sorgfalt, nie vollständig vermeiden lassen, sind wir für Hinweise und Anregungen jederzeit dankbar.

Wir weisen darauf hin, dass die im Dokument verwendeten Soft- und Hardwarebezeichnungen und Markennamen der jeweiligen Firmen im Allgemeinen einem Warenzeichenschutz, Markenschutz oder patentrechtlichem Schutz unterliegen.

INHALTSVERZEICHNIS

1 W	Vichtige Erläuterungen	5
1.1	Rechtliche Grundlagen	5
1.1.1	Urheberschutz	5
1.1.2	Personalqualifikation	5
1.1.3	Bestimmungsgemäßer Gebrauch	5
1.2	Gültigkeitsbereich	6
2 V	ariablen der WAGO I/O PRO für den Zugriff auf das Plug-	In -
	OPLON PRIO adressieren	7
2.1	Aufgabenstellung	
2.2	Programmierung WAGO I/O PRO	88 ۵
2.5		
3 Ja	alousiesteuerung über SNVT_setting und konventionellen Ta	aster 10
3.1	Aufgabenstellung	10
3.2	All compared Hard- und Software	10
3.3	Aligemeiner Hardwareaulbau	11
3.4 2.5	Programmierung der WAGO I/O PRO	12
3.5	Konfiguration Plug-In TOPLON PRIO	13
4 Sa	zenensteuerung	
4.1	Aufgabenstellung	15
4.2	Benötigte Hard- und Software	15
4.3	Allgemeiner Hardware Aufbau	16
4.4	Programmierung WAGO I/O PRO	
4.5	Konfiguration Plug-In TOPLON PRIO	21
5 T	emperaturwerte über SNVT_temp / SNVT_temp_p einlesen	bzw.
a	usgeben	
5.1	Aufgabenstellung	
5.2	Benötigte Hard-und Software	
5.3	Allgemeiner Hardware Aufbau	23
5.4	Programmierung der WAGO I/O PRO	
5.5	Wichtige Zusammenhänge für die Skalierung der LON-	
	Netzwerkvariablen	25
5.6	Konfiguration des Plug-In TOPLON PRIO	27
6 T	reppenhauslicht	
6.1	Aufgabenstellung	
6.2	Benötigte Hard -und Software	
6.3	Allgemeiner Hardware Aufbau	
6.4	Programmierung der WAGO I/O PRO	
6.5	Konfiguration des Plug-In TOPLON PRIO	
7 B	etriebsdauer von drei Verbrauchern gleichmäßig steuern	
7.1	Aufgabenstellung	
7.2	Benötigte Hard- und Software	35

7.3	Allgemeiner Hardware Aufbau	36
7.4	Programmierung der WAGO I/O PRO	37
8 An	steuerung mehrerer Funktionen mit der Netzwerkvariablen	
SN	VT_scene	40
8.1	Aufgabenstellung	40
8.2	Benötigte Hard- und Software	40
8.3	Allgemeiner Hardware Aufbau	41
8.4	Programmierung der WAGO I/O PRO	42
8.5	Erste Konfiguration des Plug-In TOPLON PRIO	43
8.6	Konfiguration des Plug-In Elka RCD 20XX	44
8.7	Ansteuerung der LED's über SNVT_state	45
8.8	Zweite Konfiguration Plug-In TOPLON PRIO	46

1 Wichtige Erläuterungen

Um dem Anwender eine schnelle Installation und Inbetriebnahme der beschriebenen Geräte zu gewährleisten, ist es notwendig, die nachfolgenden Hinweise und Erläuterungen sorgfältig zu lesen und zu beachten.

1.1 Rechtliche Grundlagen

1.1.1 Urheberschutz

Dieses Dokument, einschließlich aller darin befindlichen Abbildungen, ist urheberrechtlich geschützt. Jede Weiterverwendung dieses Dokumentes, die von den urheberrechtlichen Bestimmungen abweicht, ist nicht gestattet. Die Reproduktion, Übersetzung in andere Sprachen, sowie die elektronische und fototechnische Archivierung und Veränderung bedarf der schriftlichen Genehmigung der WAGO Kontakttechnik GmbH & Co. KG, Minden. Zuwiderhandlungen ziehen einen Schadenersatzanspruch nach sich.

Die WAGO Kontakttechnik GmbH & Co. KG behält sich Änderungen, die dem technischen Fortschritt dienen, vor. Alle Rechte für den Fall der Patenterteilung oder des Gebrauchmusterschutzes sind der WAGO Kontakttechnik GmbH & Co. KG vorbehalten. Fremdprodukte werden stets ohne Vermerk auf Patentrechte genannt. Die Existenz solcher Rechte ist daher nicht auszuschließen.

1.1.2 Personalqualifikation

Der in diesem Dokument beschriebene Produktgebrauch richtet sich ausschließlich an Fachkräfte mit einer Ausbildung in der SPS-Programmierung, Elektrofachkräfte oder von Elektrofachkräften unterwiesene Personen, die außerdem mit den geltenden Normen vertraut sind. Für Fehlhandlungen und Schäden, die an WAGO-Produkten und Fremdprodukten durch Missachtung der Informationen dieses Dokumentes entstehen, übernimmt die WAGO Kontakttechnik GmbH & Co. KG keine Haftung.

1.1.3 Bestimmungsgemäßer Gebrauch

Die Komponenten werden ab Werk für den jeweiligen Anwendungsfall mit einer festen Hard- und Softwarekonfiguration ausgeliefert. Änderungen sind nur im Rahmen der in dem Dokument aufgezeigten Möglichkeiten zulässig. Alle anderen Veränderungen an der Hard- oder Software, sowie der nicht bestimmungsgemäße Gebrauch der Komponenten, bewirken den Haftungsausschluss der WAGO Kontakttechnik GmbH & Co. KG.

Wünsche an eine abgewandelte bzw. neue Hard- oder Softwarekonfiguration richten Sie bitte an WAGO Kontakttechnik GmbH & Co. KG.

1.2 Gültigkeitsbereich

Dieser Anwendungshinweis basiert auf die genannte Hard- und Software der jeweiligen Hersteller sowie auf die zugehörige Dokumentation. Daher gilt dieser Anwendungshinweis nur für die beschriebene Installation. Neue Hard- und Softwareversionen erfordern eventuell eine geänderte Handhabung.

Beachten Sie die ausführliche Beschreibung in den jeweiligen Handbüchern.

2 Variablen der WAGO I/O PRO für den Zugriff auf das Plug-In TOPLON PRIO adressieren

2.1 Aufgabenstellung

Variablen der WAGO I/O PRO, die mit dem Plug-In TOPLON PRIO verbunden werden sollen, müssen in einem bestimmten Adressbereich abgelegt werden. Auch Konfigurationsvariable (diese Variablen behalten ihren Wert auch nach einem Stromausfall), die vom Netzwerk veränderbar sein sollen, werden in einen dafür vorgesehenen Adressbereich im RETAIN-Speicher geschrieben. Hilfreich ist hierbei die Benutzung der Template-Datei (Vorlage) für den LON-Controller 750-819. Hier sind die Adressen der Variablen für das LON-Netzwerk bereits vordeklariert. Das Template ist im Internet unter <u>www.wagotoplon.com</u> verfügbar. Wenn dieses Template nicht verwendet wird, dann sollten folgende Punkte beachtet werden:

• In der WAGO I/O PRO muss im Menü Projekt \ Optionen \ Symbolkonfiguration die Option "Symboleinträge erzeugen" aktiviert werden. Weiterhin muss das Symbolfile entsprechend konfiguriert werden (siehe Abbildung 1)

• Die Adressierung sollte mit Hilfe der Tabelle (Kapitel 2.3) vorgenommen werden, weil sonst leicht Adressbereiche doppelt belegt werden und dies zwangsläufig zu Fehlfunktionen führt.

Bei allen nachfolgenden Anwendungsbeispielen wird diese Adressierung angewendet ohne nochmals darauf hinzuweisen.

2.2 Programmierung WAGO I/O PRO

Abbildung 2: Programm Treppenlicht

Die drei Variablen am Funktionsbaustein Fb_Treppe1 befinden sich alle im Adressbereich für die Übergabe an das Plug-In TOPLON PRIO (siehe Tabelle Kapitel 2.3).

Die Treppenlichtzeit muss auch nach einem Spannungsausfall erhalten bleiben und wird deshalb als feste Adresse im RETAIN-Bereich deklariert.

Beim kompilieren des Programmcodes werden die Variablen in einer Symboldatei gespeichert. Die Datei hat den gleichen Namen wie die Programmdatei nur mit der Endung *.sym und wird im gleichem Verzeichnis gespeichert.

2.3 Tabelle der Template Variablen

Die Tabelle zeigt die Adressbereiche für die Variablen der WAGO I/O PRO, die über die Symboldatei zum Plug-In übertragen werden können.

PLC_PRG.I_DW1	REAL /DINT	%ID138	552
PLC PRG L DW/20	REAL /DINT	%ID158	628
	REAL/DINT	/010130	020
PLC_PRG.I_W1	WORD	%IW320	640
		0/ 114/ 400	
PLC_PRG.I_WI00	WORD	% IWV4ZU	639
PLC PRG Byte1	BYTE	%IB845	845
	5	/012010	0.10
PLC_PRG.I_Byte100	BYTE	%IB945	945
	POOL	0/ IV 475 0	7600
FLC_FKG.I_DILI	BUUL	/01/4/3.0	7000
PLC PRG Bit496	BOOL	%IX505.15	8080
	5001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0000
PLC_PRG.O_DW1	REAL /DINT	%QD138	552
		0/ OD159	620
FLC_FKG.O_DW20	REAL/DINT	%QD150	020
PLC PRG.O W1	WORD	%QW320	640
PLC_PRG.O_W100	WORD	%QW420	839
PLC PRG 0 Byte1	BYTE	%QB845	845
1 20_1 110.0_Dyto1	DITE	7000040	0.10
•••••		•••	•••
PLC_PRG.O_Byte100	BYTE	%QB945	945
	POOL	0/ OV 475 0	7000
PLC_PRG.O_BILT	BUUL	%QX475.0	7600
PLC PRG.O Bit496	BOOL	%QX505.15	8080
	2001		0000
			1
PLC_PRG.nci1	DWORD	%MD1792	7168
PLC PRG nci128		%MD1020	7680
	DNORD	/01WID1920	1000
Eingangsadresse			
Ausgangeadrese			
Ausyallysaulesse			
IKontigurationsvariable			

Tabelle 1

3 Jalousiesteuerung über SNVT_setting und konventionellen Taster

3.1 Aufgabenstellung

Ein Jalousiemotor soll parallel über zwei Tastsensoren angesteuert werden. Die Sensoren bestehen aus einem konventionellen Doppeltaster und einer LON-BCU mit Tasteraufsatz. Bei langer Tastenbetätigung soll die Jalousie bis in die Endlage fahren und bei kurzer Tastenbetätigung soll die Lamellenverstellung ausgeführt werden.

3.2 Benötigte Hard- und Software

- 1 LON-Controller 750-819
- 1 Digital Ausgangsklemme 2-Kanal z.B. 750-501
- 1 Digital Eingangsklemme 2-Kanal z.B. 750-400
- 1 Endklemme 750-600
- 1 konventioneller Doppeltaster
- 1 LON BCU inklusive Tasteraufsatz (mit der Applikation Jalousie)
- Network-Management Tool (z.B. LonMaker)
- LNS Plug-In TOPLON PRIO
- Programmiersoftware WAGO I/O PRO
- Funktionsbibliothek: Gebaeude_allgemein.lib

3.3 Allgemeiner Hardwareaufbau

Der LON-Taster wird über eine 2-adrige Leitung an die LON-Anschlußklemme des WAGO Controllers 750-819 angeschlossen. An den beiden digitalen Eingangsklemmen erfolgt der Anschluß des konventionellen Doppeltasters. Der Motor (**bzw. das externe Lastrelais**) für die Jalousie wird über eine 2-Kanal Digital Ausgangsklemme angesteuert.

Abbildung 3: Systemaufbau Jalousiesteuerung

3.4 Programmierung der WAGO I/O PRO

Abbildung 4: Programm Jalousiefunktion

Für die Programmierung der Applikation müssen die beiden Funktionsblöcke FbSetting und FbJalousie aufgerufen werden (siehe Bild oben). Folgende Bedingung muss bei der Eingabe der Parameterwerte an den Funktionsblöcken eingehalten werden:

FbSetting		FbJalousie
dwTK_10tel_s	<	ui_TasKurzIn10telSec
dwTL_10tel_s	>	ui_TasKurzIn10telSec

Die Eingänge "*bSetting*" und "*iRotation*" am Funktionsblock FbSetting werden bei den meisten Anwendungen nicht verwendet. Die Jalousie wird dann nur über das Element "*bFunction*" gesteuert. Die Eingangswerte für bSetting und iRotation betragen in diesem Fall:

bSetting = 16#00

iRotation = 16#7fff

Kurze Erläuterung zu den Elementen der SNVT_setting:

• Über das Element SNVT_setting.function erfolgt der Aufruf einer Funktionsnummer. Die Jalousie wird in diesem Beispiel mit drei unterschiedlichen Funktionsnummern gesteuert.

2 = Jalousie AB (Down) 3 = Jalousie AUF (Up) 4 = Jalousie STOP

- Das Element SNVT_setting.setting gibt die absolute Position der Jalousie 0-100 % mit einer Auflösung von 0,5 % an. Für die beschriebene Anwendung kann keine absolute Jalousieposition angefahren werden. Der Wert wird deshalb laut Definition (siehe Funktionsblockbeschreibung FbSetting) konstant auf 16#00 gesetzt.
- Das Element SNVT_setting.rotation dient für die Ansteuerung des absoluten Lamellenwinkels 0-360° mit einer Auflösung 0,02°. Für die beschriebene Anwendung kann kein absoluter Lamellenwinkel angefahren werden. Der Wert wird deshalb laut Definition (siehe Funktionsblockbeschreibung FbSetting) konstant auf 16#7fff gesetzt.

3.5 Konfiguration Plug-In TOPLON PRIO

Nach Import der WAGO I/O PRO Symboldatei kann die Konfiguration der Netzwerkvariablen vorgenommen werden.

Besonders wichtig ist die Definition einer TimeOut-Überwachung, damit auch gleiche, aufeinander folgende Bus-Telegramme im Programm der WAGO I/O PRO erkannt und ausgewertet werden.

NVI	
	<u>≤</u>
NVI Nr:	1
Netzwerkvariable:	n∨iSetting
Тур:	SNVT_setting (4 Bytes)
SNVT-ID:	117
Länge in Bytes:	4
TimeOut-Überwachung [s]:	0,6

Wichtig! Die Zeit für TimeOut-Überwachung muss > ui_TasKurzIn10telSec sein, damit ein langer Tastendruck erkannt wird

AO		
Name: Adresse:	■ PLC_PRG.nvi_Function 845	
Zugeordnet zu: Element:	nviSetting (SNVT_setting) function	
TimeOutverwender TimeOutverwender	0 -> 0; 127 -> 127 n: ☑ function: 0;	Wichtig! Damit Wertänderung
Default-Verhalten: Default-Maske:	Schreibe Wert	erkannt werden

IEC 61131 I	Konfiguration	Die Laufzeit der Jalousie kann im
Nr: Variablen: Typ: ID: CP-Name: Wert:	PLC_PRG.nciLaufzeit SCPTdelayTime (2 Bytes) 96 UCP_Type_14 10.0	Konfigurationsfenster der Software TOPLON-PRIO verändert werden. Die Einstellung bleibt auch nach einem Reset des Controllers erhalten. Als SCPT wurde der Typ SCPTdelayTime mit der Einstellung 10 Sekunden
		eingetragen.

Nachdem im verwendeten Network-Management-Tool das Binding zwischen der SNVT_setting des LON-Tasters und des WAGO-Controllers 750-819 hergestellt wurde kann die korrekte Funktion dieser Applikation getestet werden.

4 Szenensteuerung

4.1 Aufgabenstellung

Die Helligkeit von vier dimmbaren Lampen soll einzeln veränderbar sein. Optional soll über ein Display mit LON-Schnittstelle vier verschiedene Lichtszenen aufgerufen werden. Ein konventioneller 4-fach Taster kann gleichberechtigt diese Lichtszenen aufrufen. Mit einem zusätzlichen 1-fach Taster (konventionell) sollen neue Lichtszenen abgespeichert werden können.

4.2 Benötigte Hard- und Software

- 1 LON-Controller 750-819
- 1 Digital Ausgangsklemme 4-Kanal z.B. 750-504
- 2 Analog Ausgangsklemmen 0-10V 750-550
- 2 Digital Eingangsklemme 4-Kanal z.B. 750-402
- 1 Digital Eingangsklemme 2-Kanal z.B. 750-400
- 1 Endklemme 750-600
- 1 konventioneller Taster 1-fach
- 2 konventionelle Taster 4-fach
- dimmbare Lampen 0-10 V
- 1 Display mit LON-Schnittstelle (optional: Funktion kann auch über den Variablenbrowser des NMT simuliert werden)
- Network-Management Tool (z.B. LONMaker)
- LNS Plug-In TOPLON PRIO
- Programmiersoftware WAGO I/O PRO
- Funktionsbibliothek: Gebaeude_allgemein.lib

4.3 Allgemeiner Hardware Aufbau

Das LON-Display (optional) wird über eine 2-adrige Leitung an die LON-Anschlußklemme des WAGO Controllers 750-819 angeschlossen. An die beiden 4-Kanal Digital Eingangsklemmen sind konventionelle 4-fach Taster angeschlossen. Der 1-fach Taster zum Speichern neuer Lichtszenen wird mit dem ersten Eingang der 2-Kanal Digital Eingangsklemme verbunden. Die vier dimmbaren Lampen werden über die 4-Kanal Digital Ausgangsklemme geschaltet und über die beiden 2-Kanal Analog Ausgangsklemmen gedimmt. Die einzelnen Klemmen sind wie folgt belegt:

- DI1 (%IX0.0) Wippe oben links 4-fach Taster 1 (Schalten und Dimmen der Lampe 1)
- DI2 (%IX0.1) Wippe oben rechts 4-fach Taster 1 (Schalten und Dimmen der Lampe 2)
- DI3 (%IX0.2) Wippe unten links 4-fach Taster 1 (Schalten und Dimmen der Lampe 3)
- DI4 (%IX0.3) Wippe unten rechts 4-fach Taster 1 (Schalten und Dimmen der Lampe 4)
- DI5 (%IX0.4) Wippe oben links 4-fach Taster 2 (Aufruf Lichtszene 1)
- DI6 (%IX0.5) Wippe oben rechts 4-fach Taster 2 (Aufruf Lichtszene 2)
- DI7 (%IX0.6) Wippe unten links 4-fach Taster 2 (Aufruf Lichtszene 3)
- DI8 (%IX0.7) Wippe unten rechts 4-fach Taster 2 (Aufruf Lichtszene 4)
- DI9 (%IX0.8) Wippe 1-fach Taster (Speichern neuer Lichtszenen)
- DO1 (%QX4.0) Lastrelais Lampe 1
- DO2 (%QX4.1) Lastrelais Lampe 2
- DO3 (%QX4.2) Lastrelais Lampe 3
- DO4 (%QX4.3) Lastrelais Lampe 4
- AO1 (%QW0) Dimmsignal Lampe 1
- AO2 (%QW1) Dimmsignal Lampe 2
- AO3 (%QW2) Dimmsignal Lampe 3
- AO4 (%QW3) Dimmsignal Lampe 4

Abbildung 5: Systemaufbau Szenensteuerung

4.4 Programmierung WAGO I/O PRO

0001 PROGRAM PLC PRG	
0002 VAR	
0003 Auswahl: FbSzenenAuswahl;	
0004 AnalogSzenen: FbSzeneAnalog;	
0005 Dim1: FbDimmerEinfachTaster;	
0006 Dim2: FbDimmerEinfachTaster;	
0007 Dim3: FbDimmerEinfachTaster;	
0008 Dim4: FbDimmerEinfachTaster;	
0009 SzeneNr: BYTE; (*interne Variable Lichtszenennummer*)	
0010 nvi_Szene1 AT %IX475.0: BOOL; (*Aufruf der Lichtszene 1 v	on einem LON Sensor*)
0011 nvi_Szene2 AT %IX475.1: BOOL;(*Aufruf der Lichtszene 2 vo	on einem LON Sensor*)
0012 nvi_Szene3 AT %IX475.2: BOOL;(*Aufruf der Lichtszene 3 vo	on einem LON Sensor*)
0013 nvi_Szene4 AT %IX475.3: BOOL;(*Aufruf der Lichtszene 4 vo	on einem LON Sensor*)
0014 Aufruf1: BOOL; (*Signal bei Aufruf der Lichtszene 1*)	
0015 Aufruf2: BOOL;(*Signal bei Aufruf der Lichtszene 2*)	
0016 Aufruf3: BOOL;(*Signal bei Aufruf der Lichtszene 3*)	
0017 Aufruf4: BOOL;(*Signal bei Aufruf der Lichtszene 4*)	
0018 SignalAufruf_LZ: BOOL; (*Verknuepfungsergebnis Signal bi	ei Aufruf LZ*)
0019 Out_Dimmwert1: BYTE; (*interne Variable Rückmeldung D	immwert 1*)
0020 Out_Dimmwert2: BYTE; (*interne Variable Rückmeldung D	immwert 2*)
0021 Out_Dimmwert3: BYTE;(*interne Variable Rückmeldung Di	mmwert 3*)
0022 Out_Dimmwert4: BYTE;(*interne Variable Rückmeldung Di	mmwert 4*)
0023 In_Dimmwert1: BYTE;(*interne Variable Aufruf Dimmwert 1)	*)
0024 In_Dimmwert2: BYTE;(*interne Variable Aufruf Dimmwert 2	*)
0025 In_Dimmwert3: BYTE;(*interne Variable Aufruf Dimmwert 3	*)
In_Dimmwert4: BYTE;(*interne Variable Aufruf Dimmwert 4	*)
10027 nvo_SzeneNr AT %QB845: BYTE; (*Rückmeldung der aktue	llen Lichtszene ueber Netzwerk*)
UU28 END_VAR	

Abbildung 6: Programm Szenensteuerung

Die Abbildung 6 zeigt das WAGO I/O PRO Programm für die Szenensteuerung in FUP (Funktionsplan). Die Netzwerke 1 - 4 werden

nachfolgend kurz erläutert (Netzwerke 5-7 entsprechen im wesentlichen dem Netzwerk 4):

Netzwerk 1: Der Baustein "FbSzenenAuswahl" konvertiert binäre Tastsignale in eine Lichtszenennummer 1-8. Die Anwahl der Lichtszenen erfolgt sowohl von Netzwerk als auch über die konventionellen Taster. Deshalb ist vor jedem der vier Eingänge ein ODER-Gatter eingefügt. Der Ausgangswert wird als interne Variable und als Netzwerkvariable deklariert. Die Netzwerkvariable dient als Rückmeldung für angeschlossene LON-Teilnehmer.

Netzwerk 2: Der Aufruf einer Lichtszene wird über das ODER-Gatter im Netzwerk 2 signalisiert. Die Eingangssignale am ODER-Gatter sind die Verknüpfungsergebnisse aus Netzwerk 1 und werden über interne Variablen übergeben.

Netzwerk 3: Der Funktionsbaustein "FbSzeneAnalog" speichert und startet den Aufruf der Lichtszenen.

Der Wert am Eingang "SzenenNr" bestimmt, welche Lichtszene aufgerufen werden soll. Die internen Eingangsvariablen "Out_Dimmwert_x" dienen als Rückmeldung der aktuellen Dimmwerte. Wenn der Taster am Digitaleingang 9 (%IX0.8) betätigt wird, dann werden die anstehenden Werte der Rückmeldungen unter der aktuell angewählten Lichtszenennummer abgespeichert. Die Variablen "In_Dimmwert_x" sind mit der Eingängen der Funktionsbausteine "FbDimmerEinfachTaster" verbunden und rufen damit den Helligkeitswert auf.

Netzwerk 4: Über das am Funktionsbaustein "FbDimmerEinfachTaster" angeschlossene Tastsignal (%IX0.0) wird das Schalt- und Dimmsignal für die Lampe gesteuert. Das analoge Dimmsignal aus Netzwerk 3 wird mit dem Eingang "bDimmwert" verknüpft. Hierüber wird der Dimmwert bei Aufruf einer Lichtszene bestimmt.

Damit auch der Aufruf einer Lichtszene mit unverändertem Helligkeitswert (der Wert am Eingang "bDimmwert" wird erneut als Ausgangsdimmwert gesetzt) erkannt wird, muss das Verknüpfungsergebnis aus Netzwerk 2 über eine interne Variable auf den Eingang "xSzenenTaster" gelegt werden.

4.5 Konfiguration Plug-In TOPLON PRIO

Nach Import der WAGO I/O PRO Symboldatei kann die Konfiguration der Netzwerkvariablen vorgenommen werden.

Besonders wichtig ist die Definition einer TimeOut-Überwachung, damit auch gleiche, aufeinander folgende Bus-Telegramme im Programm der WAGO I/O PRO erkannt und ausgewertet werden.

Nachdem im verwendeten Network-Management-Tool das Binding zwischen den SNVT_scene des LON-Displays und des WAGO-Controllers 750-819 hergestellt wurde kann die korrekte Funktion dieser Applikation getestet werden.

5 Temperaturwerte über SNVT_temp / SNVT_temp_p einlesen bzw. ausgeben

5.1 Aufgabenstellung

Die über eine Eingangsklemme für Widerstandssensoren (750-461) gemessene Temperatur soll über Netzwerkvariablen vom Typ SNVT_temp und SNVT_temp_p auf das LON-Netzwerk gesendet werden. Ein Display mit LON-Schnittstelle sendet einen Temperatursollwert über SNVT_temp an den LON-Controller 750-819. Die Sollwertanzeige erfolgt auf einem konventionellen Display (0 V $\triangleq 0^{0}$ C, 10V $\triangleq 100^{0}$ C) das über eine Analog Ausgangsklemme 0-10 V (750-550) angeschlossen ist.

5.2 Benötigte Hard-und Software

- 1 LON-Controller 750-819
- 1 Analog Eingangsklemme PT100 750-461
- 1 Analog Ausgangsklemme 0-10V 750-550
- 1 Bus-Endklemme 750-600
- 1 Display mit LON-Schnittstelle (optional: kann auch über den Variablenbrowser die Temperatureingabe simuliert werden)
- 1 Temperatursensor PT100
- 1 Display mit 0-10V Steuereingang
- Network-Management Tool (z.B.LONMaker)
- LNS Plug-In TOPLON PRIO
- Programmiersoftware WAGO I/O PRO

5.3 Allgemeiner Hardware Aufbau

Das LON-Display (optional) wird über eine 2-adrige Leitung an die LON-Anschlußklemme des WAGO Controllers 750-819 angeschlossen. Der Temperatursensor PT100 muss mit der analogen Eingangsklemme 750-461 verbunden werden und das konventionelle Display mit der analogen Ausgangsklemme 0-10 V.

Abbildung 7: Systemaufbau für das Senden und Empfangen der Temperaturwerte über LON-Netzwerk

5.4 Programmierung der WAGO I/O PRO

0001	PROGRAM PLC_PRG	
0002	VAR	
0003	nvo_SNVT_temp AT %QW320: INT;	
0004	nvo_SNVT_temp_p AT %QW321: INT;	
0005	nvi_SNVT_temp AT %IW320: INT;	
0006	Analogeingang_PT100 AT %IW0: INT;	
0007	Analogausgang_0bis10V AT %QW0: INT;	
0008	END_VAR	
0001	Anglensianen DT400	
	Analogeingang_P1100	nvo_SIVV1_temp
0002		
	nvi_SNVT_temp——Analogausgang_0bis10V()	

Abbildung 8: Programm für das Senden und Empfangen der Temperaturwerte über LON-Netzwerk

Die Abbildung 8 zeigt das Programm in der WAGO I/O PRO für die Zuweisung der analogen Ein- und Ausgangsvariablen auf die LON-Netzwerkvariablen. Die Netzwerke werden nachfolgend kurz erläutert.

Netzwerk 1: Der gemessene Eingangswert der PT100 Klemme (Analogeingang_PT100) wird 1:1 mit zwei Variablen verbunden, die für die Übergabe an das Plug-In adressiert sind. Eine Variable soll im Format SNVT_temp und die andere Variable im Format SNVT_temp_p auf das Netzwerk gesendet werden.

Netzwerk 2: Der Eingangswert einer LON-Netzwerkvariable SNVT_temp wird 1:1 mit der Analog Ausgangsklemme verbunden.

Hinweis:

Die Skalierung der Temperaturwerte auf das Format der analogen Klemme erfolgt später im Plug-In PRIO.

5.5 Wichtige Zusammenhänge für die Skalierung der LON-Netzwerkvariablen

Damit die für den nächsten Schritt notwendige Skalierung der Netzwerkvariablen SNVT_temp und SNVT_temp_p durchgeführt werden kann, müssen zunächst einige Zusammenhänge bzw. Bedingungen geklärt werden:

Zahlenformat der Widerstandsklemme 750-461: -200⁰ C \triangleq -2000 dez.; 850⁰ C \triangleq 8500 dez. \Rightarrow **0,1⁰ C Auflösung.**

Zahlenformat der Analog Ausgangsklemme 750-550: 0 V \triangleq 0 dez. ; 10 V \triangleq 32767 dez.

Zahlenformat SNVT_temp: $274^{0} C \triangleq 0 \text{ dez.}$; $6279.5^{0} C \triangleq 62795 \text{ dez.}$ $\Rightarrow 0,1^{0} C \text{ Auflösung und } 274^{0} C \text{ Offset.}$

Zahlenformat SNVT_temp_p: -273.17⁰ C \triangleq -27317 dez. ; 327.66⁰ C \triangleq 32766 dez. \Rightarrow **0,01⁰ C Auflösung.**

Festlegung:

Die über den PT100 Widerstand zu messenden Temperaturen liegen im Bereich von -20° C bis $+100^{\circ}$ C.

Die über die Netzwerkvariable SNVT_temp gesendete Solltemperatur liegt im Bereich von 0^{0} C bis 100^{0} C und soll auf den Wertebereich der analoge Ausgangsklemme 0-10 V skaliert werden.

Auf Grundlage dieser Zusammenhänge kann die Skalierung wie folgt berechnet werden:

Skalierung PT100 Klemme \rightarrow NV SNVT_temp:

Max. gemessene Temperatur der PT100 Klemme	Ausgabewert der Klemme dezimal	Wert für SNVT_temp
$+100 \ ^{0}C$	100 / 0,1 = 1000	(100+274) / 0,1 = 3740
-20 °C	-20 / 0,1 =-200	(-20+274) / 0,1 = 2540

Max. gemessene Temperatur der PT100 Klemme	Ausgabewert der Klemme dezimal	Wert für SNVT_temp_p
+100° C	100 / 0,1 =1000	100 / 0,01 = 10000
-20° C	-20 / 0,1 =-200	-20 / 0,01= -2000

Skalierung PT100 Klemme \rightarrow NV SNVT_temp_p:

Skalierung NV SNVT_temp \rightarrow Analoge Ausgangsklemme 0-10V

Spannung an	Eingangswert der	Ausgabewert des	Wert für SNVT_temp
der Ausgangs-	Klemme dezimal	Displays dezimal	
klemme			
10 V	32767	100 ⁰ C	(100+274) / 0,1 = 3740
0 V	0	$0^{0}C$	(0+274) / 0,1= 2740

Diese Ergebnisse werden für die Skalierung in der Software TOPLON PRIO benötigt (siehe folgendes Kapitel).

5.6 Konfiguration des Plug-In TOPLON PRIO

Nach Import der WAGO I/O PRO Symboldatei kann die Konfiguration der Netzwerkvariablen vorgenommen werden.

Die folgenden Bilder zeigen die Konfigurationseinstellungen im Plug-In TOPLON PRIO.

NVO		NVI	
NVO Nr: Netzwerkvariable: Typ: SNVT-ID: Länge in Bytes: Send On Reset: MinSendTime [s]: MaxSendTime [s]:	➡ 1 nvoTemeraturSNVT_temp SNVT_temp 39 2 □ 0,0 0,0	NVI Nr: Netzwerkvariable: Typ: SNVT-ID: Länge in Bytes: TimeOut-Überwachung [s]:	I nviTemperatur SNVT_temp (2 Bytes 39 2 0,0
NVO			
NVO Nr: Netzwerkvariable: Typ: SNVT-ID: Länge in Bytes: Send On Reset: MinSendTime [s]: MaxSendTime [s]:	□ 2 nvoTemeraturSNVT_temp_p SNVT_temp_p (2 Bytes) 105 2 □ 0,0 0.0		

Al		
Name: Adresse: Zugeordnet zu: Element: Skalierung: SendOnDelta [%]: Default-Maske verwe Default-Wert:	 ■ PLC_PRG.nvo_SNVT_temp 640 ■ nvoTemeraturSNVT_temp SNVT_temp -200 -> 2540; 1000 -> 3740 0,500 	Wichtig! Wert für SendOnDelta eingeben, um die Netzwerkbelastung zu reduzieren
AI		
Name: Adresse: Zugeordnet zu: Element: Skalierung: SendOnDelta [%]: Default-Maske verwe Default-Wert:	■ PLC_PRG.nvo_SNVT_temp_p 642 ■ nvoTemeraturSNVT_temp SNVT_temp_p -200 -> -2000; 1000 -> 10000 0,500	Wichtig! Wert für SendOnDelta eingeben, um die Netzwerkbelastung zu reduzieren.
AO		
Name: Adresse: Zugeordnet zu: Element: Skalierung: TimeOut verwender TimeOut-Wert: Default-Verhalten: Default-Verhalten:	PLC_PRG.nvi_SNVT_temp 640 rviTemperatur (SNVT_temp) SNVT_temp 0 -> 2740; 32767 -> 3740 n: Schreibe Wert	

Nachdem das Programm und die Konfiguration in den LON-Controller geladen wurde kann die das Senden und Empfangen der Temperaturwerte überprüft werden.

6 Treppenhauslicht

6.1 Aufgabenstellung

Die Beleuchtung in einem Treppenhaus soll nach einem Tastbefehl (über Digital Eingangsklemme oder SNVT_switch) für eine parametrierbare Zeitdauer eingeschaltet bleiben und anschließend automatisch abschalten. Um eine Person im Treppenhaus vor Ablauf dieser Zeit vorzuwarnen, dass die Treppenlichtzeit abgelaufen ist, wird der Lichtstromkreis für 1 Sekunde unterbrochen. Die Treppenhauszeit kann durch einen erneuten Tastendruck jederzeit neu gestartet werden.

Eine zweite Anwendung zeigt die Treppenlichtfunktion mit der Möglichkeit das Licht durch erneuten Tastendruck abzuschalten. Bei dieser Möglichkeit wird kein Vorwarnsignal, wie in der zuvor beschriebenen Anwendung, ausgegeben.

6.2 Benötigte Hard -und Software

- 1 LON-Controller 750-819
- 1 Digitale Ausgangsklemme 2-Kanal z.B. 750-502
- 1 Digitale Eingangsklemme 2-Kanal z.B. 750-400
- 1 Bus-Endklemme 750-600
- 1 konventioneller Doppeltaster
- Lampen
- 1 LON BCU inklusive Tasteraufsatz (mit der Applikation Schalten)
- Network-Management Tool (z.B. LONMaker)
- LNS Plug-In TOPLON PRIO
- Programmiersoftware WAGO I/O PRO
- Funktionsbibliothek: Gebaeude_allgemein.lib

6.3 Allgemeiner Hardware Aufbau

Der LON-Taster wird über eine 2-adrige Leitung an die LON-Anschlußklemme des WAGO Controllers 750-819 angeschlossen. An die digitale Eingangsklemme erfolgt der Anschluß des konventionellen Doppeltasters. Die Lampen werden über die 2-Kanal Digital Ausgangsklemme geschaltet.

6.4 Programmierung der WAGO I/O PRO

Abbildung 10: Programm Treppenlichtfunktion

Die Abbildung 10 zeigt das WAGO I/O PRO Programm für die Treppenlichtsteuerung in FUP (Funktionsplan). Nachfolgend werden die beiden Netzwerke kurz erläutert:

Netzwerk 1: Der Funktionsbaustein Fb_Treppe2 realisiert die Treppenlichtfunktion mit Vorwarnung. Die Signale des konventionellen Tasters und des LON-Tasters sind über ein ODER-Gatter verknüpft. Wenn auf einer dieser Variablen eine steigende Flanke erkannt wird, startet der Ablauf der Treppenhauszeit und der digitale Ausgang (%QX0.0) wird gesetzt. Bei einer erneuten Flanke wird die Treppenhauszeit neu gestartet. Die beiden Variablen Treppenlichtzeit und Vorwarnzeit dienen zur Konfiguration und können vom LON-Netzwerk aus verändert werden. Hierzu sind sie im RETAIN Bereich adressiert worden.

Netzwerk 2: Der Funktionsbaustein Fb_Treppe1 realisiert die Treppenlichtfunktion mit manuell AUS . Die Signale des konventionellen Tasters und des LON-Tasters sind über ein ODER-Gatter verknüpft.

Wenn auf einer dieser Variablen eine steigende Flanke erkannt wird, startet der Ablauf der Treppenhauszeit und der digitale Ausgang (%QX0.1) wird gesetzt. Bei einer erneuten Flanke wird die Treppenhauszeit gestoppt und der digitale Ausgang (%QX0.1) zurückgesetzt. Dazu ist das Verknüpfungsergebnis des ODER-Gatters (Hilfsvariable M1) mit dem Eingang "xStop" verbunden worden.

6.5 Konfiguration des Plug-In TOPLON PRIO

Nach Import der WAGO I/O PRO Symboldatei kann die Konfiguration der Netzwerkvariablen vorgenommen werden.

Die folgenden Bilder zeigen die Konfigurationseinstellungen im Plug-In TOPLON PRIO:

NVI	
	1
NVI Nr:	1
Netzwerkvariable:	nviTreppenlicht1
Тур:	SNVT_switch (2 Bytes)
SNVT-ID:	95
Länge in Bytes:	2
TimeOut-Überwachung [s]:	0,0
NVI	
NM	<u></u>
NVI NVI Nr:	 2
NVI NVI Nr: Netzwerkvariable:	<mark>⊈;</mark> 2 n∨iTreppenlicht2
NVI NVI Nr: Netzwerkvariable: Typ:	≝ 2 n∨iTreppenlicht2 SNVT_switch (2 Bytes)
NVI NVI Nr: Netzwerkvariable: Typ: SNVT-ID:	 2 nviTreppenlicht2 SNVT_switch (2 Bytes) 95
NVI NVI Nr: Netzwerkvariable: Typ: SNVT-ID: Länge in Bytes:	 2 n∨iTreppenlicht2 SNVT_switch (2 Bytes) 95 2

Wichtiger Hinweis:

Die Konfigurationseinstellungen beruhen auf der Annahme, dass der LON -Taster folgende Einstellung besitzt:

- bei Tastendruck \rightarrow EIN -Telegramm senden (100.1)
- beim Loslassen \rightarrow AUS-Telegramm senden (000.0)

Abweichende Einstellungen der LON -Taster erfordern evtl. eine andere Konfiguration.

DO					
		.			
Name:		PLC_PRG.nvi_switch1			
Adresse:		7600			
Zugeordnet zu:		witch)			
Element:		SNVT_switch			
ON-Wert: value: 200; state: 1;					
OFF-Wert:		value: 0; state: 0;			
TimeOut-Vorz	zugslage:	keine Anderung			
INVI Bewertun	g:	• Keine Anderung			
DO					
Name:		PLC_PRG.nvi_switch2			
Adresse:		7601	_		
Zugeordnet z	u:	nviTreppenlicht2 (SN	/T_s	witch)	
Element		SNVI_switch			
ON-Wert:		value: 200; state: 1;			
OFF-Wert:		Value, U, state, U, kojno Ändorung			
NVI Bewertun	a.	Anderung			
TANT Dewendin	9.	V Keine Anderding			
IEC 61131 k	Configura	ation			
	O				
Nr	1				
Yevielelew.					
variabien:	PLC_P	KG. I reppeniichtzeit	Г		
Тур:	SCPId	elay l ime (2 Bytes)		Die Tr	eppenlichtzeit und die
ID:	96			Konfie	urnzeit kann im zurationsfenster von
CP-Name:	UCP_T	ype_14		TOPL	ON-PRIO verändert werden.
Wert:	10.0			Die Ei	nstellung bleibt auch nach
				einem	Reset am Controller erhalten
IEC 61131 k	Configure	ation		Als SC	CPT wurde der Typ
	\odot			SCPT	delayTime mit den
Nr:	2			Einste	llungen 10 bzw. 5 Sekunden
Variablen:	PLC_PF	RG.Vorwarnzeit		eingeti	ragen.
Typ:	SCPTd	elayTime (2 Bytes)			
ID:	96	,			
CP-Name	UCP T	vne 15			
Wort:	50	ypo_10			
wen.	0.0				

Nachdem das Binding der SNVT_switch zwischen LON-Taster und WAGO-Controller 750-819 hergestellt ist, kann die Applikation getestet werden.

7 Betriebsdauer von drei Verbrauchern gleichmäßig steuern

7.1 Aufgabenstellung

Ziel dieser Aufgabe ist, dass die Laufzeit (Betriebsdauer) von drei Verbraucher möglichst gleichmäßig gesteuert werden soll. Diese Anwendung wird häufig bei Betrieb langer Lichtbänder eingesetzt. Über einen Außenhelligkeitsfühler werden die drei Schaltgruppen des Lichtbandes bedarfsgerecht zu- oder abgeschaltet. Die Beleuchtung wird demnach in 1/3, 2/3 und 3/3-Schaltung betrieben. Damit die Leuchtmittel nicht ungleichmäßig altern, wird jeweils die Leuchtgruppe mit der geringsten Laufzeit (Betriebsdauer) zuerst eingeschaltet und die Leuchtgruppe mit der höchsten Laufzeit zuerst abgeschaltet.

7.2 Benötigte Hard- und Software

- 1 LON -Controller 750-819
- 1 Digital Ausgangsklemme 4-Kanal z.B. 750-504
- 1 Digital Eingangsklemme 2-Kanal z.B. 750-400
- 1 Analoge Eingangsklemme 0-10V
- 1 Bus-Endklemme 750-600
- 1 konventioneller Schalter
- 1 Helligkeitsfühler (0-30000 Lux $\triangleq 0 10$ V)
- Lampen
- Programmiersoftware WAGO I/O PRO
- Funktionsbibliothek: Gebaeude_allgemein.lib

7.3 Allgemeiner Hardware Aufbau

In diesem Beispiel ist der WAGO Controller nicht mit anderen LON-Teilnehmern verbunden. Ein konventioneller Schalter, für die Aktivierung der automatischen Helligkeitssteuerung, wird an den Digitaleingang (%IX2.0) angeschlossen. Die drei Lampen werden über die 4-Kanal Digital Ausgangsklemme geschaltet. Das analoge Spannungssignal (0-10 V) des Helligkeitssensors wird über die analoge Eingangsklemme (%IW0) der Steuerung zur Verfügung gestellt.

Abbildung 11: Systemaufbau für eine automatische Helligkeitssteuerung

7.4 Programmierung der WAGO I/O PRO

0002	VAR
0003	W1: Fb_Wetter;
0004	W2: Fb_Wetter;
0005	Leuchtband_drittel: BOOL; (*Schaltsignal 1/3 Beleuchtung*)
0006	Leuchtband_halb: BOOL; (*Schaltsignal 1/2 Beleuchtung*)
0007	Leuchtband_voll: BOOL;
0008	L1: FbLaufzeit;
0009	B1: FbBetrDauer;
0010	B2: FbBetrDauer;
0011	B3: FbBetrDauer;
0012	Helligkeitssensor AT %IW0: INT; (*Eingangssignal Helligkeitssensor*)
0013	Start AT %IX2.0: BOOL; (*Startsignal für automatische Helligkeitsregelung*)
0014	Lampe1 AT %QX0.0: BOOL; (*Schaltsignal Lampe 1*)
0015	Lampe2 AT %QX0.1: BOOL; (*Schaltsignal Lampe 2*)
0016	Lampe3 AT %QX0.2: BOOL; (*Schaltsignal Lampe 3*)
0017	Reset: BOOL;
0018	END_VAR
0019	VAR CONSTANT
0020	Hysterese: WORD := 1090;
0021	Schwellwert_1: INT := 5450; (*Schwellwert 1=5000 Lux*)
0022	Schwellwert_2: INT := 8720; (*Schwellwert 2 = 8000 Lux*)
0023	Schwellwert_3: INT := 16350;
0024	END_VAR

Abbildung 12: Programm für automatische Helligkeitssteuerung

Die Abbildung 12 zeigt das WAGO I/O PRO Programm für die gleichmäßige Steuerung der Betriebsdauer von drei Verbrauchern in FUP (Funktionsplan). Nachfolgend werden die beiden Netzwerke kurz erläutert:

Netzwerk 1 u. 2: Das analoge Eingangssignal des Helligkeitssensors wird über die Funktionsbausteine Fb_Wetter ausgewertet. Die drei Schwellwerte und die Hysterese werden als konstante Größen eingetragen. Wenn das Helligkeitssignal den Schwellwert überschreitet wird mit einer Verzögerung von 10 Sekunden (dwTein_10tel_s = 100) der jeweilige Ausgang gesetzt. Bei Unterschreitung wird das Signal mit einer Verzögerungszeit von 20 Sekunden (dwTaus_10tel_s) zurückgesetzt. Die folgenden Berechnungen sind für die Eingabe der Hysterese und der Schwellwerte notwendig:

Helligkeitsfühler 0 – 30000 Lux \triangleq 0 –10 V

Analog Eingangsklemme 0 V \triangleq 0 dez ; 10 V \triangleq 32767 dez \Rightarrow

 $\frac{32767}{30000Lux} = 1,09\frac{1}{Lux}$

Schwellwert_1 = 5000 Lux
$$\Rightarrow$$
 5000Lux \cdot 1,09 $\frac{1}{Lux}$ = 5450

Schwellwert_2 = 8000 Lux \Rightarrow 8000Lux \cdot 1,09 $\frac{1}{Lux}$ = 8720

Schwellwert_3 = 15000 Lux \Rightarrow 15000Lux \cdot 1,09 $\frac{1}{Lux}$ = 16350

Hysterese = 1000 Lux \Rightarrow 1000Lux \cdot 1,09 $\frac{1}{Lux}$ = 1090

Netzwerk 3: Über drei UND-Verknüpfungen werden die helligkeitsabhängigen Schaltsignale der Schwellwertschalter mit dem Start-Signal des Schalters verknüpft. Dadurch ist sichergestellt, dass die Beleuchtung nur dann eingeschaltet wird, wenn der am Digitaleingang 1 (%IX2.0) angeschlossene Schalter das Startsignal gibt. Der Funktionsbaustein FbLaufzeit steuert das Ein- und Ausschalten der drei Lampen in Abhängigkeit ihrer Betriebsdauer.

Die Betriebsdauer der Lampen wird über drei Funktionsblöcke FbBetriebsdauer ermittelt und dem Baustein FbLaufzeit zur Verfügung gestellt. Über den Betriebsstundenzähler B1 wird ein Reset Signal ausgegeben, wenn eine Betriebsdauer vom 365 Tagen erreicht ist. Über dieses Reset-Signal wird der Zählerstand aller Betriebsstundenzäher auf Null gesetzt.

8 Ansteuerung mehrerer Funktionen mit der Netzwerkvariablen SNVT_scene

8.1 Aufgabenstellung

Verschiedene Funktionen der Gebäudetechnik wie beispielsweise Jalousie und Dimmer sollen über ein LON-Raumbedienpanel angesteuert werden. Dazu soll **eine** Netzwerkvariable SNVT_scene mit dem WAGO Controller 750-819 verbunden werden.

Zusätzlich ist die Abzeige der Statusrückmeldungen auf den LED's des Raumbedienpanels gefordert. Die Statusrückmeldung soll über eine SNVT_state realisiert werden. Vorteil dieser Lösung ist, dass nur zwei SNVTs benötigt werden, um eine Applikation mit mehreren Funktionen (Jalousie, Dimmer ...) zu steuern. So könnte z.B. mit der SNVT_scene bis zu 255 Funktionen bedient werden.

8.2 Benötigte Hard- und Software

- 1 LON –Controller 750-819
- 1 Digital Eingangsklemme 2-Kanal z.B. 750-402
- 2 Digital Ausgangsklemmen 2-Kanal z.B. 750-504
- 1 Analog Eingangsklemme 2-Kanal z.B. 750-465
- 1 Analoge Ausgangsklemme 2-Kanal z.B. 750-550

- 1 Bus-Endklemme 750-600
- 1 Raumbedienpanel RCD-2000 (ELKA) Applikation: ELKA RCD 20XX 20122
- Network Management Tool (z.B. LONMaker)
- LNS Plug-In TOPLON PRIO
- Programmiersoftware WAGO I/O PRO
- Funktionsbibliothek: Gebaeude_allgemein.lib

8.3 Allgemeiner Hardware Aufbau

Das Raumbedienpanel wird über eine 2-adrige Leitung an die LON-Anschlussklemme des WAGO Controllers 750-819 angeschlossen. Die anzusteuernden Geräte werden über die dafür vorgesehenen Ausgangsklemmen angeschlossen.

Abbildung 13: Systemaufbau für die Ansteuerung des LON-Controllers über SNVT_scene

8.4 Programmierung der WAGO I/O PRO

0001 PF	ROGRAM PLC_PR	G	
0002 <mark>VA</mark>	R		
0003	D1: FbDimme	erZweifachTaster;	
0004	J1: FbJalousi	ie;	
0005	NVI_DimmAuf	AT %IX475.0: BOOL;	(*NVI Eingangssignal Dimmtaster AUF*)
0006	NVI_DimmAb	AT %IX475.1: BOOL;	(*NVI Eingangssignal Dimmtaster AB*)
0007	NVI_JalAuf	AT %IX475.2: BOOL;	(*NVI Eingangssignal Jalousietaster AUF*)
0008	NVI_JalAb	AT %IX475.3: BOOL;	(*NVI Eingangssignal Jalousietaster AB*)
0009			
0010	AODimm	AT %QW0: WORD;	(*Analoger Ausgang Dimmer*)
0011	DO_JalAuf	AT %QX2.0: BOOL;	(*Digitaler Ausgang Jalousie AUF*)
0012	Do_JalAb	AT %QX2.1: BOOL;	(*Digitaler Ausgang Jalousie AB*)
0013	DOdimm	AT %QX2.2: BOOL;	(*Digitaler Ausgang Dimmer*)
0014			
0015	nvo_dimmer	AT %QX475.0: BOOL;	; (*NVO Rueckmeldung Schaltsignal Dimmer*)
0016	nvo_JalAuf	AT %QX475.1: BOOL	; (*NVO Rueckmeldung Schaltsignal Jalousie AUF*)
0017	nvo_JalAb	AT %QX475.2; BOOL;	; (*NVO Rueckmeldung Schaltsignal Jalousie AB*)
0018 EN	ID_VAR		

Abbildung 14: Programm für die Ansteuerung des LON-Controllers über SNVT_scene

Bei der Programmierung der verschiedenen Gebäudefunktionen müssen die Funktionsblöcke aus der Bibliothek in das Programm eingefügt werden. Die Variablen werden wie in Abbildung 14 dargestellt aufgerufen.

8.5 Erste Konfiguration des Plug-In TOPLON PRIO

Nach Import der WAGO I/O PRO Symboldatei kann die Konfiguration der Netzwerkvariablen vorgenommen werden.

Die folgenden Bilder zeigen die Konfigurationseinstellungen im Plug-In TOPLON PRIO

NVI	
	<u>↓</u>
NVI Nr.	1
Netzwerkvariable:	taster
Тур:	SNVT_scene (2 Bytes)
SNVT-ID:	115
Länge in Bytes:	2
TimeOut-Überwachung [s]:	0,0

In den Einstellungen der ON und OFF Werte ist darauf zu achten, dass z.B. beim OFF-Wert die Nummer bei allen Ansteuerungen gleich und beim On-Wert die Tasternummer (1 bis 8) eingetragen wird.

DO		DO	
Name:	PLC_PRG.NVI_DimmAuf	Name:	PLC_PRG.NVI_DimmAb
Adresse:	7600	Adresse:	7601
Zugeordnet zu:	🔙 taster (SNVT_scene)	Zugeordnet zu:	🔙 taster (SNVT_scene)
Element:	scene_number	Element:	scene_number
ON-Wert:	scene_number: 1;	ON-Wert:	scene_number: 2;
OFF-Wert:	scene_number: 255;	OFF-Wert:	scene_number: 255;
TimeOut-Vorzugslage:	keine Änderung	TimeOut-Vorzugslage:	keine Änderung
NVI Bewertung:	<> keine Änderung	NVI Bewertung:	<> keine Änderung
DO		DO	
		00	
Name:	₽LC_PRG.NVI_JalAuf	Name:	■ PLC_PRG.NVI_JaIAb
Name: Adresse:	PLC_PRG.NVI_JalAuf 7602	Name: Adresse:	₽LC_PRG.NVI_JalAb 7603
Name: Adresse: Zugeordnet zu:	PLC_PRG.NVI_JalAuf 7602 Staster (SNVT_scene)	Name: Adresse: Zugeordnet zu:	₽ PLC_PRG.NVI_JalAb 7603 ➡ taster (SNVT_scene)
Name: Adresse: Zugeordnet zu: Element:	PLC_PRG.NVI_JalAuf 7602 Scene_number	Name: Adresse: Zugeordnet zu: Element:	 ■ PLC_PRG.NVI_JalAb 7603 ■ taster (SNVT_scene) scene_number
Name: Adresse: Zugeordnet zu: Element: ON-Wert:	PLC_PRG.NVI_JalAuf 7602 Haster (SNVT_scene) scene_number scene_number: 3;	Name: Adresse: Zugeordnet zu: Element: ON-Wert:	PLC_PRG.NVI_JalAb 7603 Haster (SNVT_scene) scene_number scene_number: 4;
Name: Adresse: Zugeordnet zu: Element: ON-Wert: OFF-Wert:	 ■ PLC_PRG.NVI_JalAuf 7602 ● taster (SNVT_scene) scene_number scene_number: 3; scene_number: 255; 	Name: Adresse: Zugeordnet zu: Element: ON-Wert: OFF-Wert:	 ■ PLC_PRG.NVI_JalAb 7603 ● taster (SNVT_scene) scene_number scene_number: 4; scene_number: 255;
Name: Adresse: Zugeordnet zu: Element: ON-Wert: OFF-Wert: TimeOut-Vorzugslage:	PLC_PRG.NVI_JalAuf 7602 taster (SNVT_scene) scene_number scene_number: 3; scene_number: 255; keine Änderung	Name: Adresse: Zugeordnet zu: Element: ON-Wert: OFF-Wert: TimeOut-Vorzugslage:	PLC_PRG.NVI_JalAb 7603 taster (SNVT_scene) scene_number scene_number: 4; scene_number: 255; keine Änderung

8.6 Konfiguration des Plug-In Elka RCD 20XX

Nachdem die Konfiguration im Plug-In TOPLON PRIO abgeschlossen ist, wird das Bedienpanel parametriert. Die zwei folgenden Bilder zeigen die notwendigen Einstellungen um die Funktion "Taster" herzustellen. Das zweite Bild in der Maske ist unter "Erweiterte Funktionen" zu finden.

Wichtig! Auf die Einstellung der Timerzeiten ist besonders zu achten!

Taste 1		alka
	Konfiguration Erweiterte Funktion Timer Zeit zwischen kurzem und langem Tastendruck 0.0 s Zeit zwischen einfachem und doppeltem Tastendruck 0.0 s Objektauswahl verfrügbar ausgewählt Applic Module → Scene Panel Fan Spd Adjuster → Scene Panel Ocup Sensor ✓	
#-Bedienebene 2 #-Dedienebene 3 Diagnose B-Applic State B-Setpt Adjuster B-Setpt Adjuster B-Fan Spd Adjuster B-Gocup Sensor B-Sene Panel B-Switch 0	Tastenfunktion Benutzerdefiniert Lichtszenen Nummer 1 1 ÷ Lichtszenen Nummer 2 255 ÷	

Tastenereignisse	Funktionswert		
0: Taste drücken	Szene Togglen Open Loop	-	
1: Taste gelöst vor Ablauf t1(1)	Szene Togglen Open Loop 🔄		
2: Taste gedrückt nach Ablauf t1(1)	Keine Funktion	-	
3: Taste gelöst nach Ablauf t1(1)	Keine Funktion	•	
4: Taste 2.tes mal gedrückt vor Ablauf t2	Szene Togglen Open Loop	•	
5: Taste 2.tes mal gelöst vor Ablauf t1(2)	Szene Togglen Open Loop	•	
6: Taste gedrückt nach Ablauf t1(2)	Keine Funktion	•	
7: Taste gelöst nach Ablauf t1(2)	Keine Funktion 💌		

Nachdem das Binding der SNVT_scene zwischen ELKA Panel und WAGO-Controller 750-819 hergestellt ist, kann die Applikation getestet werden.

8.7 Ansteuerung der LED's über SNVT_state

Um eine Rückmeldung der Zustände an das ELKA Panel realisieren zu können, müssen die Feedback-Variablen aus der WAGO I/O PRO den entsprechenden Bits der SNVT_state zugewiesen werden. Die Skizze zeigt die Zuordnung der Bits zu den LED's des Raumbedienpanels.

8.8 Zweite Konfiguration Plug-In TOPLON PRIO

Die folgenden Bilder zeigen die Konfigurationseinstellungen im Plug-In TOPLON PRIO für die Rückmeldung der Taster:

NVO	
	<u></u>
NVO Nr:	2
Netzwerkvariable:	nvoLED
Тур:	SNVT_state (2 Bytes)
SNVT-ID:	83
Länge in Bytes:	2
Send On Reset:	
MinSendTime [s]:	0,0
MaxSendTime [s]:	0,0

Bei der Einstellung der LED's ist zu beachten, dass das entsprechende LED-Bit der SNVT_state der Funktion (Dimmer, Jalousie...) zugeordnet wird.

DI			
Name:	PLC_PRG.nvo_dimmer		
Adresse:	7600		
Zugeordnet zu:	📑 nvoLED (SNVT_state)		
Element:	bit0		
ON-Wert:	bit0: 1;		
OFF-Wert:	bit0: 0;		
		-	
DI		DI	
	11 (A)		
Name:	PLC_PRG.nvo_JaAb	Name:	PLC_PRG.nvo_JaAuf
Adresse:	7602	Adresse:	7601
Zugeordnet zu:	📑 nvoLED (SNVT_state)	Zugeordnet zu:	📑 nvoLED (SNVT_state)
Element:	bit5	Element:	bit4
ON-Wert:	bit5: 1;	ON-Wert:	bit4: 1;
OFFWart	LOF O	OFF.Wert	bit4: 0:

Nachdem das Binding der SNVT_state zwischen ELKA Panel und WAGO-Controller 750-819 hergestellt ist, kann die Applikation getestet werden. Bei korrekter Funktion erfolgt eine Rückmeldung der Schaltsignale für Licht und Jalousie auf den LEDs des Raumbedienpanels.

WAGO Kontakttechnik GmbH & Co. KG

Internet: http://www.wago.com